
Nathalia Moraes do Nascimento

Self-Configurable IoT Embedded Agents controlled by
Neural Networks

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Informática of PUC–
Rio in partial fulfillment of the requirements for the degree of Doutor em
Ciências - Informática.

Orientador : Prof. Carlos José Pereira de Lucena
Co–Orientador: Prof. Paulo Sérgio Conceição de Alencar

Rio de Janeiro
September 2019

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Nathalia Moraes do Nascimento

Self-Configurable IoT Embedded Agents controlled by
Neural Networks

Thesis presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the re-
quirements for the degree of Doutor em Ciências -
Informática. Approved by the Examination Committee.

Prof. Carlos José Pereira de Lucena
Advisor

Departamento de Informática — PUC–Rio

Prof. Bruno Feijó
Departamento de Informática –PUC-Rio

Prof. Markus Endler
Departamento de Informática –PUC-Rio

Prof. Claudia Maria Lima Werner
COPPE –UFRJ

Prof. Elder José Reioli Cirilo
Departamento de Computação –UFSJ

Rio de Janeiro, September 18 th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

All rigths reserved.

Nathalia Moraes do Nascimento

Nathalia Nascimento holds a Master degree in Informatics with empha-
sis in Software Engineering and Artificial Intelligence from Pontifical
Catholic University of Rio de Janeiro (PUC-Rio). She has a Bachelor
degree in Computer Engineering from State University of Feira de San-
tana (UEFS). She received a CAPES Scolarship to do part of her PhD at
the University of Waterloo, Canada. Her main research topics are related
to the areas of Software Engineering, Artificial Intelligence and Internet
of Things. She is a scientrepreneur (researcher-entrepreneur), being one
of the founders of orientaMED, a company that is based on sensors and
Artificial Intelligence.

Bibliographic data
Nascimento, Nathalia Moraes do

Self-Configurable IoT Embedded Agents controlled by Neural
Networks / Nathalia Moraes do Nascimento; orientador: Carlos José Pe-
reira de Lucena; co–orientador: Paulo Sérgio Conceição de Alencar. —
2019.

116 f. : il. (color); 30 cm

1. Tese (doutorado) - Pontif́ıcia Universidade Católica do Rio de
Janeiro, Rio de Janeiro, 2019.

Inclui bibliografia.

1. Informática – Teses. 2. Agente Embarcado. 3. Agente baseado
em variabilidade. 4. Agente Configurável. 5. Rede Neural Artificial. 6.
Internet das Coisas (IoT). 7. Agentes IoT. I. Lucena, Carlos José Pereira
de. II. Alencar, Paulo Sérgio Conceição de. III. Pontif́ıcia Universidade
Católica do Rio de Janeiro. Departamento de Informática. IV. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Aknowledgments

To God, for giving me the opportunity to made my dream come true. I

am really proud to be a PhD. As this “travel” is usually long and difficult, I

know that I am lucky to have the following people with me, who I would like

to thank:

– My family - Nilza, Geraldo, Gabriela, and Jullia - for the advices and

encouragements, and for always supporting me in my decisions;

– My advisor, Professor Lucena, for the opportunity of learning with his

experience and knowledge. It was an honor;

– Professor Paulo Alencar and Professor Donald Cowan, for receiving me

as a Visitor Researcher at the University of Waterloo, discussing new

ideas, motivating me to write papers, and reviewing all my documents,

including this thesis;

– Juliano, for giving me the incentive to be more studious and organized;

– Vera, for being so helpful and for receiving all the Professor Lucena’s

students with a big smile. Thank you for making my days at PUC

happier;

– The staff members of the Department of Informatics, specially Regina

Zanon, Cosme Leal and dona Angela, who are so helpful and patient

with the students;

– My friends and colleagues, for making this journey less difficult.

This study was financed in part by the Coordenação de Aperfeiçoamento

de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. This

work was also supported by the Laboratory of Software Engineering (LES) at

PUC-Rio. Our thanks also to CNPq, FAPERJ and PUC-Rio for their financial

support.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Abstract

Nascimento, Nathalia Moraes do; Lucena, Carlos José Pereira de
; Alencar, Paulo Sérgio Conceição de . Self-Configurable IoT
Embedded Agents controlled by Neural Networks. Rio
de Janeiro, 2019. 116p. Tese de Doutorado — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Agent-based Internet of Things (IoT) applications have recently

emerged as applications that can involve sensors, wireless devices, machines

and software that can exchange data and be accessed remotely. Such applic-

ations have been proposed in several domains including health care, smart

cities and agriculture. Embodied Agents is a term used to denote intelligent

embedded agents, which we use to design agents to the IoT domain. Each

agent is provided with a ‘body’ that has sensors to collect data from the

environment and actuators to interact with the environment, and a ‘con-

troller’ that is usually represented by an artificial neural network. Because

reconfigurable behavior is key for autonomous embodied agents, there is a

spectrum of approaches to support system reconfigurations. However, there

is a need for approaches to handle agents and environment variability, and

for a broad spectrum of procedures to investigate the relationship between

the body and the controller of an embodied agent, as the interaction between

the agent and the environment changes. In addition to the body and control-

ler variability of these agents, such as those variations related to the number

and types of sensors as well as the number of layers and types of activation

function for the neural network, it is also necessary to deal with the variab-

ility of the environment in which these agents are situated. A discussion of

the embodied agents should have some formal basis in order to clarify these

concepts. Notwithstanding, this thesis presents a reference model for self-

configurable IoT embodied agents. Based on this reference model, we have

created three approaches to design and test self-configurable IoT embodied

agents: i) a software framework for the development of embodied agents to

the Internet of Things (IoT) applications; ii) an architecture to configure the

body and controller of the agents based on environment variants; and iii)

a tool for testing embodied agents. To evaluate these approaches, we have

conducted different case studies and experiments in different application

domains.

Keywords
Embodied Agent; Variability-Awareness; Configurable Agent; Artifi-

cial Neural Network; Internet of Things (IoT); IoT Agents.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Resumo

Nascimento, Nathalia Moraes do; Lucena, Carlos José Pereira de;
Alencar, Paulo Sérgio Conceição de. Agentes Embarcados de
IoT Auto-configuráveis controlados por Redes Neurais. Rio
de Janeiro, 2019. 116p. Tese de Doutorado — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Aplicações em Internet das Coisas (IoT) baseadas em agentes têm

surgido como aplicações que podem envolver sensores, dispositivos sem fio,

máquinas e softwares que podem compartilhar dados e que podem ser

acessados remotamente. Essas aplicações vêm sendo propostas em vários

domı́nios de aplicação, incluindo cuidados em saúde, cidades inteligentes

e agricultura. Uma terminologia comumente utilizada para representar

agentes embarcados inteligentes é “embodied agents”, a qual é proposta

nesse trabalho para projetar agentes para o domı́nio de IoT. Embodied

agents significa agentes que possuem ‘corpo’, o qual pode ser definido pelos

tipos de sensores e atuadores, e ‘controlador’, normalmente representada

por uma rede neural artificial. Apesar da capacidade de reconfiguração ser

essencial para embodied agents inteligentes, existem poucas tecnologias para

suportar sistemas reconfiguráveis. Além disso, é necessário novas aborda-

gens para lidar com as variabilidades dos agentes e do ambiente, e novos

procedimentos para investigar a relação entre o corpo e o controlador de um

embodied agent, assim como as interações entre as mudanças do agente e do

ambiente. Além da variabilidade do corpo e do controlador desses agentes, a

exemplo do número e tipos de sensores, assim como o número de camadas e

tipos de função de ativação para a rede neural, também é preciso lidar com

a variabilidade do ambiente em que esses agentes estão situados. A fim de

entender melhor e esclarecer os conceitos de embodied agents, este trabalho

apresenta um modelo de referência para embodied agents autoconfiguráveis

de IoT. A partir desse modelo de referência, três abordagens foram criadas

para projetar e testar agentes embarcados reconfiguráveis: i) um software

framework para o desenvolvimento de embodied agents no domı́nio de inter-

net das coisas; ii) uma arquitetura para configurar o corpo e controlador dos

agentes de acordo com as variantes do ambiente; e iii) uma ferramenta para

testar embodied agents. As abordagens foram avaliadas através de estudos

de caso e experimentos em diferentes domı́nios de aplicação.

Palavras–chave
Agente Embarcado; Agente baseado em variabilidade; Agente Con-

figurável; Rede Neural Artificial; Internet das Coisas (IoT); Agentes IoT.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Contents

1 Introduction 12
1.1 Problem Statement 13
1.2 Objectives 14
1.3 Research Questions 14
1.4 Structure of the Thesis 15
1.5 Contributions 15
1.6 Limitations 18

2 Background 19
2.1 Multiagent System 19
2.2 Embodied Agents 21
2.3 Evolutionary Algorithms 23
2.4 Artificial Neural Network (ANN) 24
2.5 Formal Methods 29

3 Related Work 33
3.1 Reference Models for Agents 33
3.2 Reference Models for Reconfigurable Systems 36
3.3 Approaches and Applications for Embodied Agents 37

4 Fundamentals of Reconfigurable Embodied Agents 39
4.1 Preliminary embodied agent concepts 39
4.2 Preliminary reconfiguration concept 41
4.3 Statecharts 41

5 Approaches and their Applications 50
5.1 Framework for IoT Embodied Agents 50
5.2 An Architecture for Embodied Agents Reconfiguration 76
5.3 An Approach to Test Embodied Agents 89

6 Conclusion 104

7 Future Work and Open Challenges 106
7.1 Morphology-based agent design 106
7.2 Descriptive Evaluations 107
7.3 Embodied agent testing and verification 107

8 Bibliography 108

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

List of Figures

2.1 The diagram of a generic agent provided by authors in (Russell and
Norvig, 1995) [p.32]. 20

2.2 The challenge: how does an embodied agent make decisions based
on collected data? 21

2.3 A general embodied agent model. 22
2.4 Block diagram representation of nervous system (Haykin, 1994).

Pg.28. 25
2.5 The model of a neuron (Haykin, 1994). P. 33. 26
2.6 Evolving a neural network. Adapted from Floreano and Mattiussi

(2008, P. 317). 30
2.7 Example of orthogonal components. Adapted from Harel (1987,

p.14). 31

4.1 Control loop executed by embodied agents. 40
4.2 General statechart of embodied agents - putting the main compo-

nents together. 42
4.3 Body and Controller Configuration components of the embodied

agent statechart. 43
4.4 Behavior component of the embodied agent statechart. 45
4.5 Statechart of Environment and Task Evaluation components. 46
4.6 The designed autonomous street lights exploiting the proposed ref-

erence model for the Body and Controller Configuration compo-
nents. 47

4.7 The designed autonomous street lights exploiting the proposed
reference model for the Agent’s Behavior component. 49

5.1 An example of an IoT embodied agent. 51
5.2 An agent-based model to generate IoT applications. 52
5.3 Class diagram of FIoT - Agents. 54
5.4 Class diagram of FIoT - Behaviors. 55
5.5 Class diagram of FIoT - Controllers. 56
5.6 An instance of FIoT to create “Quantified Fruit.” 58
5.7 Examples of scenarios. 61
5.8 Validation curve. 63
5.9 Learning curve. 63
5.10 Simulated Neighborhood. 65
5.11 Variables collected and set by streetlights. 66
5.12 A streetlight uses a neural network to make decisions based on

collected data. 67
5.13 The neural network controller for smart street lights: zeroed weights

(FIoT’s Application View). 67
5.14 Configuration file to evolve the neural network via genetic algorithm

using FIoT. 68
5.15 Simulation results - Most-Fit from each generation. 69

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

5.16 The Evolved Neural Network to be used as a controller for real
Street Lights (FIoT’s Application View). 70

5.17 Prototyping the smart street light. 71
5.18 Real Scenario where we tested a network of three smart street lights

prototypes. 74
5.19 Feature model of embodied agents’ body. 78
5.20 Feature model of a embodied agents’ controller. 79
5.21 High-level model of the self-configurable agent approach to gener-

ate embodied agents. 80
5.22 Schematic illustration of our architecture to store and retrieve ma-

chine learning models based on context. Published in (Nascimento
et al., 2018). 82

5.23 Modeling variability-aware embodied agents. 84
5.24 Class diagram of a multiagent system composed of IoT embodied

agents. 85
5.25 Training step: varying the background light context in a street light

scenario to generate generic and specialized ML models. 87
5.26 Deployment step: selecting the trained model to use according to

the context. 88
5.27 A Publish-Subscribe-based architecture to test MASs. 91
5.28 Testable Agent class. 92
5.29 Making FIoT’s agents as Testable Agents. 94
5.30 Setting log values for each Testable FIoT agent. 94
5.31 Overview of the general application architecture. 95
5.32 Activity diagram of the streetlights. 96
5.33 Activity diagram of the ObserverAgent. 96
5.34 Simplified state machine for verifying test cases generated for the

function “evaluate selected solution”. 98
5.35 Simplified state machine for verifying test cases generated for the

functions “switch the light ON” and “switch the light OFF”. 100
5.36 Executing the state machine to test the function “switch the

light ON”: failure generated between states “switchLightON” and
“detectLight” - specific log was not consumed. 100

5.37 Executing the state machine to test the evaluation solution: failure
generated between states “calculatePeople” and “calculateTripDu-
ration” - because the machine did not receive the log that indicates
that everyone finished their routes during the selected solution. 101

5.38 Executing the state machine to test the evaluation solution. 101
5.39 Subscribing to receive only logs related to the evaluation solution

testing. 101
5.40 Subscribing to receive logs from all agents. 101

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

List of Tables

5.1 Case I: Flexible Points 59
5.2 Configuration of experiments at Figure 5.7. 60
5.3 Subset of the training set. 62
5.4 Subset of the test set. 62
5.5 FIoT’s Flexible Points 64
5.6 Case I: Main statechart components. 76
5.7 Summary of embodied agents variability. 81
5.8 Street lights’ performance results obtained while executing different

models with different contexts. 88
5.9 Case II: Main statechart components. 89
5.10 Functional tests at different perspectives (Simplified Table) 99
5.11 Case III: Main statechart components. 102

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

...have the courage to follow your heart and
intuition. They somehow already know what
you truly want to become.

Steve Jobs

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

1
Introduction

Based on the Google Trends tool (Google, 2018), the Internet of Things

(IoT) (Atzori et al., 2012) is emerging as a topic that is highly related to

robotics and machine learning. In fact, the use of learning agents has been

proposed as an appropriate approach to modeling IoT applications (Nasci-

mento and Lucena, 2017). These types of applications address the problems

of distributed control of devices that must work together to accomplish tasks

(Atzori et al., 2012). This has caused agent-based IoT applications to be con-

sidered for several domains, such as health care, smart cities, and agriculture.

For example, in a smart city, software agents can autonomously operate traffic

lights (Nascimento and Lucena, 2017), driverless vehicles (Herrero-Perez and

Martinez-Barbera, 2008) and street lights (Nascimento and Lucena, 2017).

Agents that can interact with other agents or the environment in which

the applications are embedded are called embodied agents (Brooks, 1995;

Marocco and Nolfi, 2007; Nolfi et al., 2016; Nascimento and Lucena, 2017).

Examples of such agents can be found in areas such as autonomous robots

and cyber-physical systems. The first step in creating an embodied agent is

to design the agent’s body, which determines the agent interaction with an

application’s sensors and actuators involving the signals that the agent will

send and receive (Nolfi et al., 2016). As a second step, to sense the environment

and behave accordingly, this agent is provided with a controller, that is usually

represented by an artificial neural network (ANN).

However, deploying these applications in specific scenarios has been chal-

lenging because of the complex static and dynamic variability of the physical

devices (e.g. sensors and actuators), the software scenario behavior and the

environment. First, the physical devices may vary in terms of variables such

as number and types of sensors, energy consumption, battery life and number

and types of actuators (e.g. alarms). Second, the software scenario application

behavior must vary in accordance with the variations in the physical devices

and the environment. For example, this behavior may involve different types

of communication and distinct forms of notification (e.g. alerts). Third, the

deployment problem becomes even more complex as the environment brings

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 1. Introduction 13

about variations in both the physical devices and the application behavior.

Reconfigurable behavior is fundamental to agents that deal with changing

environments (Luckcuck et al., 2018), allowing the set of agents to be recon-

figured to provide specialized and better solutions to specific environmental or

soft-goal priorities changes (Lapouchnian et al., 2006). A reconfigurable sys-

tem must have alternative ways to meet particular objectives, such as efficiency

and precision, to be able to change configurations at runtime according to this

specific criteria (MacDonald et al., 2004). There are some approaches that sup-

port the development of reconfigurable physical systems, but most of them are

not based on a reference model that describes what the agents do, thus posing

challenges for the development of robust and safe systems (Ingrand, 2019). A

discussion of self-configurable embodied agents should have more clarifications,

making possible the understanding of the relationship between the body and

the controller of an embodied agent because the interactions between the agent

and the environment change in complex ways.

This thesis presents a reference model for self-configurable IoT embodied

agents based on statecharts (Harel, 1987) and, based on this model, provides

three novel approaches to design and test self-configurable embodied agents: i)

a software framework for the development of embodied agents to the Internet

of Things (IoT) applications; ii) an architecture to configure the body and

controller of the agents based on environment variants; and iii) a tool for

testing embodied agents. To evaluate these approaches, we have conducted

case studies and experiments in different application domains.

1.1
Problem Statement

Because reconfigurable behavior is key for autonomous embodied agents,

there is a spectrum of approaches to support system reconfigurations (Yim et

al., 2007; Luckcuck et al., 2018). We realized that there is a need for approaches

to handle embodied agent and environment variability, and to investigate the

relationship between the body and the controller of an embodied agent in

terms of the complex and dynamic interactions between the agent and the

environment. In addition to the body and controller variability of these agents,

which involves, for example, the number and types of sensors as well as the

number of layers and types of activation function for the neural network, it is

also necessary to deal with the variability of the environment in which these

agents are situated (Beer, 2008; Jelisavcic et al., 2018; Bredeche et al., 2018;

Banarse et al., 2019).

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 1. Introduction 14

1.2
Objectives

Our main objective in this thesis is to deliver feasible approaches to assist

with the development of self-configurable IoT embodied agents. To this end,

the thesis aims at:

– Identifying the main variation points of embodied agents that can be

configured according to the environment changes;

– Providing a reference model for self-configurable IoT embodied agents;

– Developing an approach for designing embodied agents based on the

proposed model;

– Developing an approach for testing embodied agents based on the

proposed model;

– Developing application scenarios to validate the proposed software ap-

proaches.

1.3
Research Questions

To reach these objectives, we seek to answer the following four research

questions:

– RQ1. How can embodied agents and their interactions with the environ-

ment be specified?

– RQ2. How to design and implement a software framework to support the

development of embodied agents?

– RQ3. How to define an architecture to configure the body and controller

of the agents based on the environment variability?

– RQ3.1. What is the variability related to embodied agents and how can

this variability be represented?

– RQ3.2. How can we represent the effect of the relevant environment

changes on the reconfiguration of the embodied agents?

– RQ4. How to design and implement an approach to test embodied agents

and their variability?

The questions are in the order in which the answers will be provided in

the text. For example, in chapter 4, we answer RQ1, and in Chapter 5, we

answer RQ2, and so on.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 1. Introduction 15

1.4
Structure of the Thesis

In this section, we provide an overview of the thesis structure and

summaries for each chapter.

Chapter 2 Background This chapter provides some necessary back-

ground information to allow the understanding of the thesis. In particular, we

provide an overview about Multiagent Systems (MAS), Modeling Formalisms,

and Artificial Neural Networks.

Chapter 3 Related Work We present the state of the art and the

differences between this thesis and the works related to the formalizing

and designing of reconfigurable embodied agents, including approaches and

applications for embodied agents.

Chapter 4 Fundamentals of Reconfigurable Embodied Agents

In this chapter, we cover the question RQ1. How can embodied agents

and their interactions with the environment be specified?. First, we

survey the main concepts of embodied agents requirements taking previously

published work and personal experiences into account. Then, we use statecharts

to provide a reference model for embodied agents and their interactions with

the environment.

Chapter 5 Approaches and Applications This chapter describes the

three novel approaches that we created to design and test self-configurable

embodied agents based on our reference model. We present the specific

problems that must be solved through these approaches and describe each

of them in detail.

Chapters 6 and 7 Conclusions and Future Work We conclude by

summarizing the thesis, highlighting the contributions and limitations, and

proposing future work.

1.5
Contributions

We have investigated embodied agents for six years. As a result, our

contributions are multi-fold:

– Fundamentals:

1. A reference model for self-configurable embodied agents, represent-

ing the interactions between the agent and the environment changes.

– Approaches:

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 1. Introduction 16

1. The Framework for the Internet of Things (FIoT): A novel software

framework to instantiate different applications based on IoT em-

bodied agents (Nascimento and Lucena, 2017). We introduced the

concept of embodied agents into the Internet of Things domain;

2. A context-aware approach to reconfigure embodied agents (Nasci-

mento et al., 2018; Nascimento, 2018);

3. A testing approach to evaluate embodied agents-based applications

(Nascimento et al., 2017; Nascimento et al., 2019).

– Applications:

1. The design and implementation of different applications for each

one of the approaches (Nascimento et al., 2015; Nascimento Marx

Leles Viana, 2016; Nascimento and Lucena, 2017; Nascimento and

Lucena, 2017).

In addition, we have produced 11 scientific articles and 4 technical reports

that contributed to the development of this thesis.

1.5.1
Scientific Articles

2019

1. (submitted) Nascimento, N., Lucena, C., Alencar, P., and Viana, C.

J. (2019). A Metadata-Driven Approach for Testing Self-Organizing

Multiagent Systems. Submitted to ACM Transactions.

2018

1. Nascimento, N., Alencar, P., Lucena, C., and Cowan, D. (2018, Decem-

ber). An IoT Analytics Embodied Agent Model based on Context-Aware

Machine Learning. In 2018 IEEE International Conference on Big Data

(Big Data) (pp. 5170-5175). IEEE.

2. Nascimento, N., Alencar, P., Lucena, C., and Cowan, D. (2018, Decem-

ber). Toward Human-in-the-Loop Collaboration Between Software En-

gineers and Machine Learning Algorithms. In 2018 IEEE International

Conference on Big Data (Big Data) (pp. 3534-3540). IEEE.

3. (Qualis B1) Nascimento, N, Paulo Alencar, Carlos Lucena, and Donald

Cowan. A context-aware machine learning-based approach. In:

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 1. Introduction 17

ACM. Computer Science and Software Engineering (CASCON), 28th

Annual International Conference on. [S.l.], 2018.

4. (short paper - Doctoral Consortium) Nascimento, Nathalia. A Self-

Configurable IoT Agent System based on Environmental Vari-

ability. Proceedings of the 17th International Conference on Au-

tonomous Agents and MultiAgent Systems (AAMAS). 2018.

2017

1. (Qualis A1) do Nascimento, Nathalia Moraes, and Carlos José Pereira

de Lucena. Fiot: An agent-based framework for self-adaptive and

self-organizing applications based on the internet of things.

Information Sciences 378 (2017): 161-176.

2. (Qualis B1) do Nascimento, Nathalia Moraes, and Carlos José Pereira

de Lucena. Engineering cooperative smart things based on em-

bodied cognition. Adaptive Hardware and Systems (AHS), 2017

NASA/ESA Conference on. IEEE, 2017.

3. (Qualis B1) do Nascimento, N. M., Viana, C. J. M., von Staa, A.,

and Lucena, C. (2017). A Publish-Subscribe based Architecture

for Testing Multiagent Systems. 29th International Conference on

Software Engineering and Knowledge Engineering (SEKE’2017) (pp. 521-

526).

2016

1. (short paper) do Nascimento, Nathalia Moraes, Marx Leles Viana, and

Carlos Lucena. An IoT-based Tool for Human Gas Monitoring.

IXV Congresso Brasileiro de Informatica em Saude (CBIS). Vol. 1. 2016.

2. (Qualis B1) Briot, Jean-Pierre, Nathalia Moraes de Nascimento, and

Carlos Lucena. A multi-agent architecture for quantified fruits:

Design and experience. 28th International Conference on Software

Engineering and Knowledge Engineering (SEKE’2016). 2016.

2015

1. (Qualis B1) do Nascimento, Nathalia Moraes, Carlos Lucena, and Hugo

Fuks. Modeling quantified things using a multi-agent system.

2015 IEEE/WIC/ACM International Conference on Web Intelligence

and Intelligent Agent Technology (WI-IAT). 2015.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 1. Introduction 18

1.5.2
Technical Reports

1. Nascimento, N., Lucena, C., Alencar, P., and Viana, C. J. (2019). Testing

Self-Organizing Multiagent Systems. arXiv preprint arXiv:1904.01736.

2. Nascimento, N., Alencar, P., Lucena, C., and Cowan, D. (2018). Ma-

chine Learning-based Variability Handling in IoT Agents. arXiv

preprint arXiv:1802.03858.

3. Nascimento, N., Lucena, C., Alencar, P., and Cowan, D. (2018). Soft-

ware Engineers vs. Machine Learning Algorithms: An Empiri-

cal Study Assessing Performance and Reuse Tasks. arXiv preprint

arXiv:1802.01096.

4. Nascimento, N., Lucena, C., Fuks, H. (2015). Internet das Coisas para

Conservação de Frutas: O Caso da Banana. Serie Monografias em

Ciencia da Computacao - PUC-Rio.

1.6
Limitations

As the development of embodied agents is part of a broader context, a

set of related aspects are out of the scope of this thesis. Thus, the following

topics are not directly addressed by this work:

– Security;

– Ontology;

– Language Description;

– Communication Protocols.

”

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

2
Background

In this chapter, we first provide an introduction to Multiagent Systems

(MASs), including Embodied Agents, which is the domain of this thesis. Next,

we define some concepts involved in our proposed solution. In particular, we

briefly describe some definitions of (i) modeling formalisms, and some artificial

intelligence techniques, such as (ii) neural networks and (iii) evolutionary

algorithms. This thesis also involves some concepts that are particular to

specific sections, but will not be discussed in this section, such as Internet of

Things (IoT) (Section 5.1), Variability Models and Publish-Subscribe (Section

5.3). Thus, we provide a brief description of these additional concepts in the

introduction of the correspondent sections.

2.1
Multiagent System

The authors in (Russell and Norvig, 1995) define “agent” as “anything

that can be viewed as perceiving its environment through sensors and

acting upon that environment through effectors.” Accordingly, they describe

the sensors and actuators of different agent types. For example, a human

agent has eyes, ears, and other organs for sensors, and hands, legs, mouth,

and other body parts for effectors. A robotic agent uses cameras and infrared

range finders as sensors and various motors as effectors. A software agent has

“strings encoded” as its sensors and actuators. They provide an abstract view

of an agent, which is illustrated in Figure 2.1. It shows the action output

generated by the agent in order to affect its environment.

An agent can inhabit real or simulated environments. These environments

can differ taking other properties into account. For example, if the environment

changes while an agent is deliberating, then we say the environment is dynamic

for that agent; otherwise it is static. Different environment types require

different agent in order to deal with them effectively (Russell and Norvig, 1995).

Many attributes are discussed in the context of agency, such as (Wooldridge

and Jennings, 1995):

– Mobile: an agent that has the ability to move around an electronic

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 20

Figure 2.1: The diagram of a generic agent provided by authors in (Russell
and Norvig, 1995) [p.32].

network (White, 1994);

– Situated: an agent that experiences the environment using sensors and

acts using effectors (Russell and Norvig, 1995);

– Embodied: an agent that has a body and experiences the world directly

(Brooks, 1995). According to the author in (Brooks, 1995), disembodied

systems concentrate on programming intellectual activities like chess,

while the embodied approach aims at equipping a digital computer with

the best sense organs (e.g. “organs” to move, talk, hear, touch, and see).

We describe these agents in more detail in Section 2.2;

– Awareness: an agent has the ability of sensing its environment in different

ways, and take decisions accordingly.

According to the authors in (Wooldridge, 2009), a collection of interacting

agents is a Multiagent System (MAS). Therefore, multiagent systems can be

used to model complex and dynamic real-world environments, which involves

a vast number of entities (e.g. simulation of societies) (Poslad, 2007). It is a

useful paradigm for managing large distributed information handling systems

(Marzo et al., 2004).

Multiagent systems have been applied to a wide range of application

types, including e-commerce, human-computer interfaces, network control, air

traffic control, and health diagnosis (Lucena, 2004; Pěchouček and Mař́ık,

2008).

2.1.1
JADE

The Java Agent DEvelopment Framework (JADE) is a Java software

framework implemented that facilitates the development of multiagent systems

(Telecom, 2015). According to the authors in (Pěchouček and Mař́ık, 2008),

JADE is a leading open-source agent development environment on the market

and some of the existing MAS applications and prototype systems use it.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 21

JADE implements the Foundation for Intelligent Physical Agents (FIPA)

specifications that represent a collection of standards for the development of

agent-based systems (FIPA, 2015). One of these standards is the Agent Com-

munication Language (ACL) (FIPA, 2015), a protocol for agent communica-

tion. It allows the development of an interoperability communication structure,

in which agents can be executed on different platforms and exchange informa-

tion (Bellifemine et al., 2007; Bellifemine et al., 2010).

2.2
Embodied Agents

According to the author in (Brooks, 1995), “only an embodied intelligent

agent is fully validated as one that can deal with the real world.” Embodied

agents have a body and are physically situated, that is, they are physical agents

interacting not only among themselves but also with the physical environment.

They can communicate among themselves and also with human users. Robots,

wireless devices and ubiquitous computing are examples of embodied agents

(Steels, 2004). According to the author in (Steels, 2004), a robot can be seen

as a software agent controlling a physical body. For example, the author in

(Wooldridge, 2009) describes the robot Stanley (i.e. an unmanned ground

vehicle navigation developed by authors in (Thrun et al., 2007)) as “an

autonomous agent embodied in a car.” The author in (Wooldridge,

2009) states that most effort in building Stanley went into the perception

module, which is responsible for making the relation between the sensors and

the associated techniques to interpret sensor data. This complexity is not a

particular problem of physical agents. The authors in (Russell and Norvig,

1995), for example, support the idea of specifying which action an agent ought

to take in response to any given percept sequence to provide a design for

an ideal agent. However, they argue that creating these specifications could

provide an infinite list for most agents. As depicted in Figure 2.2, the task of

making decisions is the most challenging.

Figure 2.2: The challenge: how does an embodied agent make decisions based
on collected data?

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 22

To mitigate this problem, some approaches have provided embodied

agents with artificial neural networks (Nolfi, 1995). Figure 2.3 depicts a

common approach to model physical agents, such as robots and IoT devices.

Figure 2.3: A general embodied agent model.

Furthermore, according to the authors in (Polani, 2011), the embodiment

can be seen as a two-way filter layer between the controller and the environ-

ment. First, the embodiment filters the external world and determines how the

controller perceives it. Second, the embodiment translates commands emitted

by the controller and expresses them as observable behaviors. Through the

Internet, the controller and body can communicate. A software agent contains

the controller that is an encoded neural network. The neural network outputs

define the values to be set in the actuators. These outputs are calculated ac-

cording to the data collected by sensors and the encoded configuration that

the neural network is using.

2.2.1
Evolving Embodied Agents

Because there is a need to find a configuration that enables those

agents to act according to the environment specifications, to find the best

configuration for the neural network is not an easy task. Thus, a known

approach is to use a genetic algorithm to configure this neural network.

The authors in (Nolfi et al., 2016) describe the process for evolving

embodied agents using an evolutionary algorithm, such as genetic algorithm.

The interested reader may find more details about this process elsewhere

(Miller et al., 1989; Yao, 1999).

Normally, the use of an evolutionary algorithm in a multiagent system

provides the emergence of behaviors that were not defined at design-time,

such as those in a communication system (Oliveira and Loula, 2015). While in

traditional agent-based approaches the desired behaviors are defined intuitively

by the designer, in evolutionary ones these are often the result of an adaptation

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 23

process that usually involves a larger number of interactions between the agents

and the environment (Nolfi and Floreano, 2000).

The process of evolving an embodied agent’s neural network can occur on-

line or off-line (Nelson et al., 2007). The on-line training uses physical devices

during the evolutionary process. In such case, an untrained neural network is

loaded into a physical agent. Then, the evolution of this neural network occurs

based on the evaluation of how this real device behaves in a specific scenario.

The off-line training evolves the neural controller in a simulated agent (Nelson

et al., 2007), and then transfers the evolved neural network to a physical agent.

The major disadvantage of executing on-line evolution is the increase in

execution time, since evaluating physical devices may require more time. In ad-

dition, the training process based on evolution can produce bad configurations

for the neural network, which could generate serious problems in particular sce-

narios. Otherwise, the on-line training ensures that evolved controllers function

well in real devices.

2.3
Evolutionary Algorithms

The artificial evolutionary algorithm is briefly defined as a collection of

individuals in a search space, where each is a different solution to a given

problem. A chromosome represents the individual, and the goal of the search

is to identify the one with the best genetic material. We measure the quality

(fitness) of each by a given fitness function, which measures how good that

particular individual is among the ability of the entire population. The fittest

individuals will have greater ability to reproduce and this could result in the

reduction of the least fit individuals.

The different individual sequence of genes can be in various formats

such as binary, character strings, numeric values, and others. We represent

the genetic material of an individual, of that search space, by a vector m with

p positions:

p = x1, x2, x3, · · · , xm , where each x represents a gene also known as

solution variable.

According to the authors in (Floreano and Mattiussi, 2008), the size of

the population for experiments that require interaction with a real environ-

ment normally is less than one hundred. Typically, the genotype of the first

individuals are created randomly. The goal of this process is to ensure diver-

sity for the initial generation. In the case of binary representation, for example,

each genotype is created by a random sequence of 1s and 0s. The quality of

the generation is measured based on an individual fitness average.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 24

While the algorithm does not find a generation to meet the stopping

criterion, new generations are being formed. The stopping criterion can be an

individual performance criteria, by fitness function, the average fitness of all

individuals, or the range of the maximum number of generations formed during

the evolutionary process.

Natural selection preserves the best-adapted individuals of a generation,

giving them a greater chance to procreate. Following this concept, the algo-

rithm should select the best parents of the current generation, so that they

can transfer their genetic material to the next generation. Thus, the first step

of the reproduction process is the selection. There are several ways to perform

this selection process. Among the best known are the roulette, selection by a

tournament, and by ranking (see (Floreano and Mattiussi, 2008)).

To avoid the loss of the best solution during evolution, one can use the

popular strategy of elitism. Elitism is a strategy of a composition of a new

population. The strategy maintains the n best-selected individuals in the new

generation, so that, one of their children has a copy of their genetic material.

When a generation does not meet the stopping criteria, among all possible

solutions to the problem it addresses, probably the best of their solutions is

not enough to solve it. Thus, it is necessary to apply genetic operators, so that

it is possible to introduce diversity in the population, and thus can insert new

solutions in that search space. One of the operators is the crossover, which

generates a new individual from the combination of genetic material from two

or more individuals parents. The other is the mutation that generates new

individuals with a slightly changed genetic code from small random changes

caused by their genotype. For more details about the different types of selection

and genetic operators, see (Floreano and Mattiussi, 2008).

2.4
Artificial Neural Network (ANN)

Bodies with a neural network have at least two advantages: selective

transmission of signals among body parts (input-output mapping (Haykin,

1994)), and adaptation through synaptic plasticity (Floreano and Mattiussi,

2008). The block diagram in Figure 2.4 illustrates the input-output mapping

process of a nervous system. It receives information from the environment,

perceives it, and makes appropriate decisions (Haykin, 1994). According to

(Haykin, 1994), “plasticity permits the developing nervous system to adapt to

its surrounding environment.” As a result, the interest of modeling the opera-

tion of the neural system to build intelligent machines has been increasing.

Haykin (Haykin, 1994) provides the following definition of a neural

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 25

Figure 2.4: Block diagram representation of nervous system (Haykin, 1994).
Pg.28.

network viewed as an adaptive machine:

A neural network is a massively parallel distributed processor made

up of simple processing units, which has a natural propensity for

storing experiential knowledge and making it available for use. It

resembles the controller in two respects:

– Knowledge is acquired by the network from its environment

through a learning process.

– Inter-neuron connection strengths, known as synaptic weights,

are used to store the acquired knowledge.

Systems that use an Artificial Neural Networks (ANN) have been pre-

senting other properties beyond adaptivity, such as pattern recognition, per-

ception, and motor control (Haykin, 1994). An ANN consists of neurons and

connections. To understand how a neural network functions is necessary to

understand these elements.

2.4.1
Artificial Neuron

According to Haykin (Haykin, 1994), a neuron is an information-

processing unit that is fundamental to the operation of a neural network.

Figure 2.5 shows the model of a neuron, which forms the basis for designing

artificial neural networks.

This model identifies some basic properties of a neuron, as shown

(Haykin, 1994):

– A set of synapses or connecting links. Specifically, a signal xm at the

input of synapse m connected to neuron k is multiplied by the synaptic

weight Wkm. Unlike a synapse in the controller, the synaptic weight of

an artificial neuron may lie in a range that includes negative as well as

positive values.

– An adder for summing the input signals, weighted by the respective

synapses of the neuron. The adder can add excitatory inputs or subtract

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 26

Figure 2.5: The model of a neuron (Haykin, 1994). P. 33.

inhibitory inputs from other neurons connection (McCulloch and Pitts,

1943).

– An activation function for limiting the amplitude of the output of

a neuron. Typically, the amplitude range of the output of a neuron is

normalized and written as a unit closed interval [0,1] or alternatively

[-1,1].

– An externally applied bias, denoted by bk . The bias bk has the effect of

increasing or lowering the net input of the activation function, depending

on whether it is positive or negative, respectively. As shown in Figure 2.5,

the effect of the bias is accounted by adding a new input signal fixed at

+1, and adding a new synaptic weight equal to the bias bk .

In mathematical terms, Haykin (1994, P. 33) proposes the following

equations to describe a neuron k:

uk =
m∑
j=1

wkj × xj (2-1)

vk = uk + bk ; (2-2)

yk = f (vk); (2-3)

where x1, x2, · · · , xm are the input signals; wk1,wk2, · · · ,wkm are the

synaptic weights of neuron k ; uk is the linear combiner output due to the input

signals; bk is the bias; f (.) is the activation function; and yk is the output signal

of the neuron.

The activation function, denoted by f (.), defines the output y of a neuron

k in terms of the induced local field v . According to Haykin (1994), the sigmoid

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 27

function is by far the most common form of activation function used in the

construction of artificial neural networks. The equation 2-4 presents an example

of a sigmoid function:

yk =
1

(1 + e−vk)
; (2-4)

See Haykin (1994, P. 34) for more information about different types of

activation functions.

2.4.2
Network Architectures

An ANN is an arrangement of neurons. There are different classes of

network architectures (e.g. competitive networks, which can make use of a

Winner-Takes-All algorithm(WTA), recurrent, feedforward, etc. See a discus-

sion about them in (Haykin, 1994)). A widely used type is the feedforward

network. They contain an input layer and an output layer. The first consists

of sensory neurons that receive environmental stimuli. The second consists of

motor neurons, which are responsible for producing the network response (Flo-

reano and Mattiussi, 2008). A network may have one or more hidden layers,

which are composed of hidden neurons.

The function of hidden neurons is to intervene between the external

input and the network output in some useful manner (Haykin, 1994). These

neural networks are commonly referred to as multilayer perceptron (Haykin,

1994). To determine the number and the size of the hidden layers is mostly a

matter of trial and error. However, there are heuristic techniques to establish

an optimal number of hidden neurons (Haykin, 1994). For example, the author

in (Kuurkova, 1992) proposes a technique to derive estimates of numbers of

hidden units based on properties of the function being approximated and the

accuracy of its approximation. Alternatively, some researches (Miller et al.,

1989; Belew et al., 1990) have been using evolutionary algorithms to design

the network topology automatically.

Another type of network class is the recurrent network. Recurrent net-

works distinguish themselves from feedforward networks in that they have at

least one feedback loop. Feedback refers to a dynamic system whenever the

output of an element in the system influences in part the input applied to that

particular element (Haykin, 1994).

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 28

2.4.3
Adaptive Process

According to Floreano and Mattiussi (2008), adaptation is a major

feature of the nervous system. This allows the body to modify and develop

behaviors in order to maintain or improve their probability to survive in

dynamic and partially unknown environments. According to the authors in

(Yao, 1999), learning and evolution are two fundamental forms of adaptation.

There has been a great interest in combining learning and evolution with

artificial neural networks (ANNs) in recent years.

Learning Algorithm

According to Haykin (1995, P. 46), “a major task for a neural network

is to learn a model of the environment in which it is embedded.” The

learning algorithm used to train the network is directly linked with the neural

network structure. After the learning step, the knowledge representation of

the surrounding environment is defined by the values taken on by the free

parameters (i.e., synaptic weights and biases) of the network (Haykin, 1994).

A learning algorithm can be supervised or unsupervised. In supervised

algorithms, the neural training process is performed using labeled examples.

In such cases, each example representing an input signal is paired with a

corresponding desired response. Algorithms for unsupervised learning do not

provide a set of input-output pairs (Haykin, 1994). According to the authors

in (Floreano and Mattiussi, 2008), the use of an evolutionary algorithm is an

alternative or complementary technique to unsupervised learning algorithms

for adapting a neural network. We describe a particular evolutionary algorithm

in Section 2.4.3.

An algorithm that is commonly used to train multilayer perceptrons is

the error back-propagation algorithm (Haykin, 1994). Basically, error back-

propagation learning consists of two steps: a forward and a backward steps.

In the first one, an activity pattern (input vector) is applied to the sensory

nodes of the network. As a result, a set of outputs is produced. During the

forward step the synaptic weights of the networks are all fixed. During the

backward step, the synaptic weights are all adjusted in accordance with an

error-correction rule (Haykin, 1994). The adjustment of the synaptic weights

of the neurons in accordance with the error signal leads to an adaptive process

(Haykin, 1994). See a detailed description about back-propagation algorithm

in Haykin (1994, P. 183).

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 29

Evolving Neural Networks with a Genetic Algorithm

Similar to unsupervised learning algorithms, evolutionary algorithms

have been commonly used for adapting neural networks without a teacher

(Turner and Miller, 2014). According to Pagliuca et. al (Pagliuca et al., 2018),

neuroevolution (NE) can be applied to any type of neural network and can be

used to adapt all the characteristics of the network, including the architecture

of the network, the transfer function of the neurons, and the characteristics of

the system (if any) in which the network is embedded.

For the evolution of a neural network, its characteristics are encoded in

artificial genomes. A genome is usually represented as a string of real or binary

values, and evolved according to a performance criterion. If the goal is only to

train the neural network, the genotype will encode only the value of synaptic

weights (Floreano and Mattiussi, 2008). The interested reader may consult a

more extensive paper (Yao, 1999).

By using an evolutionary algorithm, a weight sequence represents the

genotype of an individual. One generation consists of a pool of individuals that

represent different network configurations (see the description of evolutionary

algorithms in Section 2.3). Figure 2.6 illustrates a multilayer feedfoward

network and two candidates (individuals) for its weights sequence. We are

supposing that the weights are real values and can be written as a unit closed

interval [-3,3].

For each weight sequence candidate, the algorithm evaluates the network

performance. The better individuals are selected to reproduce and create the

next generation.

2.5
Formal Methods

Formal specification is the process of using a formal method, a language

with a mathematically defined syntax and semantics, to describe a system

(Clarke and Wing, 1996). According to Clarke et al. (1996) (Clarke and

Wing, 1996), the main benefit of using a formal method is to gain a deeper

understanding of the system that has being specified. It allows developers to

uncover design flaws, inconsistencies, ambiguities, and incompletenesses.

There are many formal methods available, such as Z notation (Spivey,

1988), Temporal Logic (Wolper, 1983), and Statecharts (Harel, 1987). Accord-

ing to (Ingrand, 2019), we must select a formal method according to the type

of behavior that we have to model, such as functional and timing behavior,

and the type of properties that we want to check. For example, the Z notation

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 30

Figure 2.6: Evolving a neural network. Adapted from Floreano and Mattiussi
(2008, P. 317).

is usually used to specify the behavior of sequential systems, while Statecharts

are usually used to specify the behavior of concurrent systems.

2.5.1
Statecharts

Statecharts is a formal method that extends the formalism of state ma-

chines and state diagrams with essentially three elements: hierarchy, concur-

rency and communication (Harel, 1987). This formal method has been used to

specify reactive systems, that are systems that have to react to external and

internal stimuli. Accordingly, the behavior of reactive systems is composed

of input and output events, conditions, and actions (Harel, 1987). The main

elements of Statecharts are:

– State and Events: a natural description of the dynamic behavior of a

complex system (Harel, 1987);

– Transition: a transition is the connection between two states (source and

destination) and can be represented by the triple: e[c] / a, in which “e” is

an event, “c” is a condition, and “a” is an action. The transition “e[c] /

a” is enabled if the statechart is in a source state for this transition, the

event “e” occurs, and the condition “c” is true. Thus, the trigger of the

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 31

transition is the event and condition together. If a transition is applied,

the state changes from the source to the destination state, and the action

is carried out;

– Composition (or Clustering): introduces the XOR (exclusive-or) decom-

position of states, which captures the property that, being in a state, the

system must be in only one of its composite components;

– Orthogonality: independence and concurrency. It introduces the AND

decomposition of states, which captures the property that, being in a

state, the system must be in all of its AND components. According to

Harel, “an obvious application of orthogonality is in splitting a state in

accordance with its physical subsystems. This typically occurs on a very

high level of the specification”;

– History. In statecharts syntax, entering the history state means to enter

the most recently visited state.

In short, state diagrams are simply directed graphs, with nodes denoting

states, and arrows denoting transitions. Depending on the tool that is used to

design statecharts, a state can be represented by different graphical notations.

States are usually represented by rounded rectangles. Figure 2.7 depicts an

example that we reproduced from Harel (1987, P. 14) using the StarUML tool

(StarUML, 2019).

Figure 2.7: Example of orthogonal components. Adapted from Harel (1987,
p.14).

This example depicts the statechart of an overly simplified avionic

systems, composed of a set of subsystems such as radar and abc-system.

The notation used in statecharts is the physical splitting of a box into

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 2. Background 32

components using dashed lines. According to Harel, to be useful, a state

approach must be modular, hierarchical and well-structured. The possibility

of modular modelling also provides easy assembly and reusability. Another

characteristic that we represent in this picture is the orthogonality. As shown,

the avionic subsystems are orthogonal components, that means being in the

“AVIONIC SYSTEMS”, the system must be in “radar” and “abc-system”.

In Chapter 4, we provide more details about statecharts, following Harel’s

formal description (Harel, 1987).

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

3
Related Work

As described in Chapter 1, there are many challenges related to under-

standing the relationship between the body and the controller of an embodied

agent because of the complex dynamic interactions between the agents and

the environment. According to (Harel et al., 2019), approaches that integrate

Artificial Intelligence techniques, such as Machine Learning and Multiagent

Systems, and Software Engineering (SE) Techniques are promising. SE tech-

niques, such as statecharts, can endow AI-based systems with intuitive and

clear specifications that can result in systems that are much easier to enhance

and maintain compared to current uses of AI in system development.

In this chapter, we describe current research efforts to specify embedded

agents and reconfigurable systems. In addition, we introduce some approaches

and applications that support or involve the development of self-configurable

IoT embodied agents.

3.1
Reference Models for Agents

The need of providing reference models to understand the relationships

among the properties of agents, environments, and forms of interaction between

them has been discussed in agent-based literature for many years (Agre, 1995).

According to (Agre, 1995), the characterization of interaction should allow us

to address questions like these:

– What will our agent do in a given environment?

– Under what conditions will it achieve its goals or maintain desired

relationships with other things?

– In what kinds of environment will it work?

– How do particular aspects of an environment affect particular types of

agents’ abilities to engage in interactions that have particular properties?

– What forms of interaction require an agent to employ particular elements

of internal architecture, such as memory?

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 3. Related Work 34

– What forms of interaction permit an agent to learn particular knowledge

or skills?

According to (Klügl and Davidsson, 2013) and (Santos et al., 2017),

there is clearly a lack of formal specification in Multi-Agent Based Modelling

and Simulation (MABS). Wooldridge (Wooldridge, 2009) presents formal

descriptions for the basic introduction to multiagent systems, such as what is

an agent and how it is embedded in an environment. A more elaborated formal

description for multiagent systems can be found in (Luck et al., 1995; d’Inverno

et al., 2004). Luck et al. (1995) propose a three-tiered hierarchy of entities

comprising objects, agents, and autonomous agents. Based on this hierarchy,

they present a formal approach for agents using Z notation. Luck et al. (1995)

describe objects as entities that are capable of perceiving the environment

and acting. Accordingly, actions are events thats change the state of the

environment, and attributes are perceivable characteristics of this environment.

The authors argue that agents are objects that serve useful purposes, satisfying

a goal or a set of goals. In addition, an agent may not necessarily be able to

perceive the environment.

The formalization for agents proposed by Luck et al. (1995) does not

consider changes that may suddenly happen in the environment by perturbing

the agent’s state, a situation that is usual to entities structurally coupled

with their environment, as embodied agents. Notwithstanding, Bae and Moon

(2015) (Bae and Moon, 2015) investigated a set of specification proposals

for agent-based models and observed that most of them focus more on

agent behaviors than on the environment. Our proposal considers that the

environment has autonomous features, which can be changed by generating

perturbations to the agent.

In addition to the coupling with a dynamic environment, embodied agents

also have other particularities, such as many options to configure their physical

properties, and the use of an artificial neural network to make decisions.

Considering that embodied agents is a subtype of autonomous agents, as

described in (Franklin, 1997), we could have extended an existing reference

model to include embodied agent particularities. For example, the one provided

by Luck et al. (1995), that still describes autonomous agents. However, to

extend an existing reference model to include embodied agent particularities,

a set of elements from the Agent Oriented Software Engineering (AOSE)

literature that are not usual in the embodied agent literature, such as plans,

beliefs and motivation, should be considered.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 3. Related Work 35

3.1.1
Reference Models for Embodied Agents

Embodied agents is a subtype of autonomous agents (Franklin, 1997).

(Ingrand, 2019) investigates the availability of formal models in autonomous

physical systems (ASs) and states that there exist numerous frameworks to

develop and deploy AS and robotic software, but most of them do not provide

formal models to describe what they do. According to Ingrand (2019), this

poses some new challenges for the development of robust and safe ASs that

have not yet been addressed by non ASs, since it makes it more difficult to

validate and verify ASs. For example, the authors of (Seshia et al., 2016) list

five challenges for designing verified AI-based systems: environment modeling,

modeling system that learn, formal specification of the desired properties of the

system, computational engines for training and testing AI-based systems, and

designing a training process that leverages the specification and environment

models. According to Ingrand (2019), researchers are just starting to look at

these issues.

A research that influenced our proposed reference model is the meta-

model proposed in (Klügl and Davidsson, 2013). Klügl and Davidsson (2013)

propose an abstract meta-model as a general formalization of multiagent

models that considers environmental dynamics that happen without being

triggered by an agent, such as seasonal temperature, a tree growing, or

rain starts to fall. Also, their proposal is the first formalization for MAS to

introduce the concepts of body and controller. In short, an agent consists of

both body and controller, in which the body represents the physical parts of

the agent by carrying sensors and actuators, and the controller contains the

reasoning capabilities by handling the decision-making processes. For example,

in the case of Belief–Desire–Intention agents (BDI), the authors state that the

controller contains beliefs, goals and plans. The authors also mention that this

controller may be based on a neural network, but they only provide a very short

explanation about how their model can represent a neural network. Beyond

the Body and Controller components, their model also includes the Region

component, which represents the environment where the agents and objects

are situated. However, as the authors state, their model is very simple and its

current state covers only very basic structures and processes. In addition, it

is clear the need of addressing an extension of the controller and of providing

more explanations about the interactions among the components. For example,

it is not clear how the body affects an agent’s controller, neither how the

agent’s controller interferes on its behavior. In addition, their model does not

encompass support for agent reconfiguration.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 3. Related Work 36

3.2
Reference Models for Reconfigurable Systems

The authors in (Luckcuck et al., 2018) systematically survey the state-

of-the-art in formal specification for autonomous robotic systems. According

to the authors, specifying reconfigurable autonomous physical systems is a

challenge.

According to (Bruni et al., 2015), adaptive and reconfigurable systems

address other questions, such as :

– What parts of the system should be adapted? That is, which artifacts

(variables, components, connectors, interfaces, etc.) have to be modified

in order to adapt?

– Why is adaptation required? Is the purpose of adaptation to meet some

robustness criteria, to improve the system’s performance or to satisfy

some other goal?

– How should adaptation be applied? That is, which is the plan that

establishes the order in which to apply the necessary adaptation actions?

– Who should enact the adaptation? Which entity (e.g., human controller,

autonomic manager) is in charge of each adaptation?

(Weyns et al., 2012) describe a formal reference Z model for self-

adaptive systems, called FORMS. The authors state that while FORMS offers

a formally founded vocabulary for the key architectural constructs comprising

self-adaptive systems, it does not provide an implementation framework from

which self-adaptive applications can be derived. Our approach includes some

aspects of their reference proposal, such as how the physical agent interacts

with the environment.

Another influence on the work presented herein is the architecture for

reconfigurable embedded systems proposed by (Karsai and Sztipanovits, 1999).

They use a finite-state machine (FSM) to represent reconfiguration, setting a

state for each possible configuration. In their architecture, they consider an

evaluator component that is responsible for controlling the transitions among

the configuration states. This component is also responsible for triggering

reconfiguration. In our model, we do not represent alternative configurations,

since to pre-define possible configurations to applications based on embodied

agents is not a suitable solution, as we discuss in Section 5.2.1. However,

we consider an evaluator component that is able to trigger and manage

reconfiguration.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 3. Related Work 37

3.3
Approaches and Applications for Embodied Agents

There are known software approaches to assist with the development

of embodied agents. For example, the Framework for Autonomous Robotics

Simulation and Analysis (FARSA) (Massera et al., 2013) assists research in

the area of embodied cognition, adaptive behaviour, language and action. A

set of works on embodied agents (Marocco and Nolfi, 2007; Nolfi and Parisi,

1997; Nolfi and Floreano, 1998; Massera et al., 2014) was developed using

FARSA or related software. Most of these works present a group of embodied

agents that evolves for the ability to solve a collective problem.

Another framework for embodied agents is presented in (Sobe et al.,

2012), the Framework for Evolutionary Design (FREVO). The authors in

(Sobe et al., 2012) present Frevo as a multi-agent tool for evolving and

evaluating simulated systems. The authors state that Frevo allows a framework

user to select a target problem evaluation, controller representation and an

optimization method. This framework is often applied in the creation of robotic

applications, such as foraging and navigation tasks.

Our work is the first to introduce embodied agents in the Internet

of Things domain, showing that a concept that was very oriented towards

the development of robots, could be extended to a new application domain

(Nascimento and Lucena, 2017). Our work was extended by (Zedadra et al.,

2017), which provided a reference architecture for the development of Internet

of Things applications based on cognitive physical agents. According to the

authors, the use of a swarm of simple devices provides scalability, robustness,

flexibility and interoperability to IoT architectures. As future work, they intend

to implement the proposed reference model and to investigate its application

to different IoT systems.

Both reconfigurable-based and physical agent applications have been suc-

cessfully applied in several scenarios, such as in the health-care, transportation,

military and smart city domains. Reconfigurable systems are usually associ-

ated with the provision of customized recommendation or decision making.

According to (Maćıas-Escrivá et al., 2013), most of these applications are only

prototypes and are not in production because users may not understand or

trust them.

Embodied agents has been used to robotic applications so far. However,

there are many examples of applications that could be modeled by using the

concept of embodied agents. As an example, the smart paper machine pre-

sented in (Katasonov et al., 2008), where the machine has a set of sensors

to self-monitor, and activates an alarm if it needs maintenance. The recon-

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 3. Related Work 38

figuration process occurs through changing the formats of messages or the

algorithms for issuing alarms. The authors in (Baresi et al., 2014) simulate a

smart green house scenario with intelligent rooms. In their simulation, flowers

are distributed in different rooms based on specific characteristics. If a flower

is sick, it will be allocated to another room or the room’s configuration will

change. Therefore, the authors use adaptive techniques to perform discovery,

self-configuration, and communication among heterogeneous things. The au-

thors in (Zhu et al., 2014) simulate the development of a smart office, which

is composed of people, rooms and resources, such as air conditions, networks,

lighting, and temperature. The goal of their proposal is to optimize an office,

by managing tasks and the organization. The use of an adaptive algorithm

allows the system to infer the process when the environment changes. If a per-

son leaves a room, the system recalculates the office organization. According

to the authors, “the adaptations are driven by a declarative algorithm, which

considers the organization and the task.”

The website in (Postcapes, 2019) lists more than fifty smart applications

for the Internet of Things. An example is a smart garden. The idea of this

project is to allow people to get recommendations of plants that will grow well.

The adaptation occurs because the system can be adjusted according to users’

experiences via a shared database. Another example is a smart landfill gas

collection. The system acts independently and can be adjusted according to an

operators’ need, whether that be maximizing collection, minimizing odors, or

collecting gas of a specific chemical composition. However, as these applications

are listed in a website as commercial products, the authors do not provide

information about their development (e.g. models, techniques).

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

4
Fundamentals of Reconfigurable Embodied Agents

In this chapter, we cover the question RQ1. How can embodied

agents and their interactions with the environment be specified?.

This work proposes a reference model that offers some well-suited abstractions

tailored to the development of self-configurable IoT embodied agents that

are able to interact with dynamic environments. First, we survey the main

concepts related to embodied agents and their requirements, taking previously

published work into account. Second, we provide high-level statecharts models

of embodied agents, and then we expand the boxes of each component (e.g.,

Body, Controller). After describing general models, we extend these models to

represent an illustrative application that uses reconfigurable embodied agents.

4.1
Preliminary embodied agent concepts

Embodied agents are “autonomous agents structurally coupled with their

environment” (Franklin, 1997). According to (Quick et al., 1999), a system X is

embodied in an environment E if perturbatory channels exist between the two.

In other words, X is embodied in E if for every time t at which both X and E

exist, some subset of E’s possible states have the capacity to perturb X’s state,

and some subset of X’s possible states have the capacity to perturb E’s state

(Quick et al., 1999). Accordingly, our proposed model must contain at

least two components: embodied agents and the environment.

4.1.1
Agent Body

Basically, an agent body is composed of sensors and effectors. According

to (Kinny, 2001), the agent “interacts with its environment via interfaces of

two types: sensors from which the agent receives events that carry information

from its environment, and effectors by which the agent performs actions that

are intended to affect its environment.”

Auerbach and Bongard state that “different parts of the robot’s body are

responsible for different behaviors. For example, wheels or legs may allow for

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 40

movement while a separate gripper allows for object manipulation” (Auerbach

and Bongard, 2009). Based on the previous observations, our model

describes the effects that the agent body has on its behavior.

4.1.2
Agent Behavior

To develop autonomous agents, (Horn, 2001) propose the development of

agents that execute a control loop composed of four activities: collect, analyze,

plan and execute, which are briefly described next.

– Collect: collect application data;

– Analyze: analyze the collected data by trying to detect problems;

– Plan: decide on an action in the case of problems; and

– Execute: change the application because of executed actions.

Based on the initial concepts of embodied agents, we customized this

control loop proposed by (Horn, 2001) to define the behaviors of embodied

agents. Instead of executing the analyze and plan activities, embodied agents

make decisions based on a controller, which could be a finite state machine

(FSM) or an artificial neural network (ANN), as shown in Figure 4.1.

Figure 4.1: Control loop executed by embodied agents.

In short, an embodied agent must execute three key activities in sequence,

namely: (i) collect data from the thing; (ii) make decisions; and (iii) take

actions. The task of data collection focuses on processing information coming

from devices, such as reading data from input sensors. The collected data are

used to set the inputs of the agent’s controller. Then, the controller processes a

decision to be taken by the agent. Embodied agents act based on the controller

output. An action (effector activity) can be to interact with other agents,

to send messages, or to set actuator devices, thus making changes to the

environment.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 41

4.1.3
Agent Controller

In addition, the intelligent behavior of an embodied agent arises out of

the coupled dynamics of its body, its controller, and the environment where

it is situated (Auerbach and Bongard, 2012). According to (Auerbach and

Bongard, 2009), the complexity of an agent controller and body must match

the complexity of a given task. However, more complex task environments

require the agent to exhibit different behaviors. Therefore, it is necessary to

find the combination of agent body and controller that allows the agent to

behave accordingly.

Based on the previous observations, our model also describes

the effects of the agent’s controller on its behavior. In addition, it

includes a new component to represent task environment.

4.2
Preliminary reconfiguration concept

According to (Karsai and Sztipanovits, 1999), the reconfiguration mech-

anism must be associated to an evaluation module that represents how the

system’s performance will be monitored and evaluated, and how the evalua-

tion’s result will affect the system’s architecture. In addition, the reconfigu-

ration mechanism should be capable of interacting with the evaluator, being

triggered by it.

The evaluation module measures a set of variables from the environment,

and it can trigger the reconfiguration mechanism if it identifies a change in the

set of measurable variables.

Based on the previous observations, our model includes a new

component to represent task evaluation, which is able to trigger the

reconfiguration process.

4.3
Statecharts

Statecharts makes it possible to view the description of the solution

in different levels of detail (zooming-in and zooming-out), allowing a top-

down behavioral specification. Therefore, it facilitates the understanding of

a complex architecture. Other relevant characteristics are compositionality,

hierarchy, and inter-components communications. Thus, our model can use

transitions to explain the perturbations that occur between the environment

and agents, which are the main components of embodied agents, as explained

in Section 4.1.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 42

A high-level specification is given in Figure 4.2, which contains the

full statechart of an embodied agent. The main components of configurable

embodied agents will be described in detail in the next subsections, in which

we will look inside each one of these components.

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

State1

Self-Configurable Embodied Agent

Embodied Agent

Embodied Agents - i E [1...N]

Agent Configuration

idle

Controller

configure

configure

Agent Behavior

Embodied Agent - i-1
Embodied Agent - i

Agent Configuration

Behavioral

Task Evaluation

reconfigure

sense

set

Task Evaluation

Performance Evaluation

Prediction Evaluation

affects

set

affect

reconfigure

Context

Dataset

Environment

Context1
CurrentContext

set

decide

set

adjust

Perception Decision

Effector

Environment

Variables

set

configure

perturbperturb

Body

Context

set

StateMachine5::StatechartDiagram1

Figure 4.2: General statechart of embodied agents - putting the main compo-
nents together.

The diagram above shows the states that are responsible for configuring

embodied agents according to their task. The agent comes out of the idle state

when the system is initialized. As shown, we represented an embodied agent

as a super state, and we assumed some physical and functional description

of the system to describe their actions and activities. Therefore, we provided

an hierarchical decomposition of this state into agent configuration and agent

behavior. The component of agent configuration is responsible for configuring

the agent’s body and controller. Once the agent is configured, it is ready to

behave in accordance with the environment. The agent behavior consists of

three components: i) perception; ii) decision; and iii) effector. As shown, the

perception, decision and effector capabilities of the agent are directly related

to how the body and controller of the agent are configured. To represent it, we

use the transition “set” between the components of configuration and behavior.

Internal transitions have been omitted for simplicity.

Figure 4.2 also depicts inter-component communications between the

agent behavior and environment components. As shown, the variables of the

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 43

environment perturb the agent behavior. As Perception is the default state

among Perception, Decision and Effector, the default way of entering this

group of states is by the Perception state. In short, environment’s variables

perturb agent’s perception. On the other hand, the effector state perturbs the

environment. We will describe the details of these interactions in subsequent

sections.

The unique way of entering the Task Evaluation component is through

the environment component via “set.” As shown in Figure 4.2, after evaluating

the task, the system return to the initial state, that is the agent configuration,

resulting on a cycle. By entering the agent configuration state, the default

option is to reconfigure the whole agent unless transition “adjust” is selected.

If “adjust” is selected, only the agent controller will be reconfigured.

4.3.1
Agent Configuration - Body and Controller

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

State1

Agent Configuration

Body

Inputs - i E [1..N]

Sensor 1

disabled
select

deselect

enabled

Communication Channel - input

disabled enabled
select

deselect

Outputs - i E [1..N]

idle

configure

Actuator 1

disabled

Communication Channel - output

enabled

enableddisabled

select

deselect

select

deselect

Cobtroller - Neural Network

Connections - i E [1..N]

Connection 1

off

on

updateconnect
set weight

...

disconnect
change weight

Connections
between
neurons -
weights

Task Evaluation

adjust

add

connect

reconfigure

H

H

H

H

H

Neurons

Input Neurons

Output Neurons

set
Hidden Neurons

set

Activation Function

Sigmoid

ReLu

binary

H
select

configure

add

use

StateMachine9::BodyStateDiagram

Figure 4.3: Body and Controller Configuration components of the embodied
agent statechart.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 44

A refinement of the agent configuration state yields Figure 4.3. After

looking inside the body component, we can see that the process of configuring

agent body consists of enabling or disabling some inputs, such as sensors,

and outputs, such as actuators, which are represented with disabled/enabled

substates. According to Harel (1987) (Harel, 1987), “an obvious application of

orthogonality is in splitting a state in accordance with its physical subsystems.”

Thus, we represent the process of configuring agent body’s inputs and outputs

as independent states. In other words, selecting the components to compose

the body’s outputs does not depend on the components that are selected to

compose its inputs. By default, all inputs and outputs are unselected, but we

include a shallow history (“H”) state in each component to allow the system to

enter the most recently visited of the two, and enter “disabled” if the system

is there for the first time.

To configure the agent controller, there is a transition between the body’s

inputs and the input neurons, and a transition between body’s outputs and

output neurons. In other words, input neurons are set according to the enabled

body’s inputs, and the output neurons are set according to the enabled body’s

outputs. Each neuron may be connected to more than one neuron. So, a neuron

adds a connection to the system and this connection is connected to a neuron

(another or the same one). This statechart component represents the weight

configuration of a neural network, in which the output of a neuron may enter

another neuron as an input with an specific weight. After zooming-in the

agent’s controller, it is possible to see that the “adjust” transition segment,

whose source is a state at the Task Evaluation component, is directly associated

to the connections component, allowing the reconfiguration process to result

only on enabling, disabling or updating connections.

4.3.2
Agent Behavior

As we explained above, the behavior of the agent varies based on the

physical components that are operated by the agent and its controller. In short,

the behavior of embodied agents is composed of three activities (see subsection

4.1.2): perception, decision and effector. The task of perception focuses on

processing information coming from devices, such as reading data from input

sensors. The collected data are used to set the inputs of the agent controller.

Then, its controller processes a decision to be taken by the agent. Finally, the

agent acts based on the controller output. An action (effector activity) can be

to interact with other agents, to send messages, or to set actuator devices, thus

making changes to the environment.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 45

Selected inputs have an effect on the perception state, while outputs

determine the effector state. For example, if the communication input is

enabled, the agent will be able to listen to other agents; if the agent has a

sensor A, the agent will be able to sense variable A at the environment; and if

the communication output is activated, the agent will be able to speak.

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

State1

Embodied Agent

Agent Configuration

Agent Behavior

Perception Decision

Effector

Body

Controller

set

communicate

 [since in Sensor1.enabled]

 [since in Sensor2.enabled]

 [since in Communication.enabled]

Inputs

outputs

listening

reading Sensor 1

reading Sensor 2

. . .

setenable

setting Actuator 1

. . .

set

 [since in Communication.enabled]

 [since in Actuator1.enabled]

Environment

running neural network

processing outputs

set input

set

calculate

perturb

enable

sense

perturb

set

processing inputs

StateMachine10::BehaviorStateDiagram

Figure 4.4: Behavior component of the embodied agent statechart.

Note that we have used some joint states on this picture. When a state

emanates from a joint state, its source set consists of the sources of those of

the constituent segments. For example, entering the substate “running neural

network” depends on the incoming transitions from the states “configuring

controller” and “processing inputs”. In other words, how the collected inputs

are processed to produce outputs depends on the neural network configuration.

Consequently, the controller is crucial to the decision state. Perception and

Effector substates also have more than one source. The transition segment

“perturb” from Environment and the segments “enable” from Inputs are

connected to enter the Perception’s substates, and this means that sensing a

specific environment’s variable depends on the sensors that the agent has. Upon

sensing some sensors on “Perception” component, the “set” transition will be

taken and the action “processing inputs” will be carried out. Notwithstanding,

entering Effector’s substates depends on the outgoing transitions from body’s

outputs (e.g. actuators that are enabled) and from the Decision state (e.g.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 46

output values that were calculated by the neural network). Results from

Effector component perturb the environment, since some variables can be

updated according to the agents’ actions. For example, if the agent turns on

the light, it will change the value of the brightness variable.

4.3.3
Environment and Task Evaluation

The “Environment” component is composed of variables and contexts,

as depicted in Figure 4.5. Variables represent perceivable characteristics of this

environment. The “Variables” component consists of N orthogonal substates,

in which each substate is responsible for controlling an specific variable of the

environment, such as brightness, humidity, and many others. They are actually

responsible for the updating itself. Based on the variables’ values, an specific

context is selected. For example, supposing we have the contexts of “day”

and “night”, the current context will be selected according to the values of

“brightness” and “time” variables.

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

State1

Environment

Task EvaluationVariables i - E [1..N]

calculate

update

update

Var 2

Contexts i - E [1..N]

Var 1

evaluating score

producing score

reading target variables
update

update

H
select

Context 1

Context 2

Context N

Context does
not set
environmental
variables. Env
that sets the
context

select

Join: um ou outro - reconfiguro
pelo contexto ou pela avaliacao.
JOIN - reconfiguro com base no
contexto e na avaliacao
- PONTUACAO 10 A NOITE EH
DIFERENTE DE PONTUACAO
10 DURANTE DIA

evaluate

Score is
evaluated
according
to the
selected
context

Embodied Agent

reconfigure

Agent Configuration

Body Controller

adjust

StateMachine11::EnvDiagram

Figure 4.5: Statechart of Environment and Task Evaluation components.

In short, the “Task Evaluation” component is responsible for examining

the environment to investigate how the collection of embodied agents can be

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 47

configured to deal with the system’s requirements and environmental changes.

For this purpose, it will inspect specific variables on the environment in order

to calculate a score. However, the significance of this score varies according

to the current context, as we discuss in (Nascimento et al., 2018). In (Pezzulo

and Nolfi, 2019), the authors illustrate a scenario with artificial agents that the

evaluation policy varies according to the context. We represent this situation

with a joint state. For example, if we are calculating energy consumption, it

is expected that the energy that is spent during the night be greater than

during the day. So consuming 10kW during the day has a different impact

from consuming this same energy value during the night. Further, the agents

reconfiguration will be operated according to this evaluation. It can trigger the

transition “reconfigure” by restarting the whole process of configuring an agent,

as shown in Figure 4.2, or just trigger the transition “adjust”, reconfiguring

only the neural network connections, as shown in Figure 4.3.

4.3.4
Illustrative Application

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

Street Light Behavior

Effector

Perception

State4

Environment

Context 1set

Context

LightingOFF

Day

Night

Street Light - Embodied Agent

Street Light Configuration

Body

enableddisabled

Inputs

Outputs

Lighting Sensor

enableddisabled

H

Wireless Speaker

Motion Sensor

H disabled enabled

Wireless Microphone

H disabled enabled

Light Switch

H disabled enabled

H disabled enabled

Decision

activating light

H
select

Environment

perturb

perturb

sensing ambient brightness

receiving data from the neighboring streetlights

conversing with neighboring streetlights

OFF DIM ON

Controller

Neurons

Input Neurons

Input Neuron 1

on off

add

Input Neuron 2
add Input Neuron 3

add

remove

Output Neurons

Output Neuron 1

on off

add

remove Output Neuron 2

add

calculating people flow

StateMachine6::StatechartStreetLight

Figure 4.6: The designed autonomous street lights exploiting the proposed
reference model for the Body and Controller Configuration components.

This section introduces an illustrative example to show an application

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 48

of the proposed reference model. In particular, we illustrate the statechart of

embodied agents in a specific application scenario: autonomous street lights,

in which each street light represents an embodied agent. In this scenario, each

street light may contain a lighting sensor, motion sensor, wireless microphone,

wireless speaker and light switch apparatus. As we describe in Figure 4.6,

configuring the agent body consists of disabling or enabling some inputs and

outputs. For example, we may have a street light agent containing only a

lighting sensor as its input, and a light switch apparatus as its output; or we

can create more robust street light agents by enabling them to communicate

among themselves by means of wireless gadgets.

Configuring the agent controller also consists of disabling or enabling

some components. As shown in Figure 4.6, the number of neurons varies

according to the sensors and actuators that were enabled. Accordingly, there

will be an input neuron for each activated sensor and an output neuron for each

activated output. To simplify this figure, we did not illustrate the Connections

component shown in Figure 4.3. Basically, if a neuron is at the ”on” state (i.e.

it is active), it will be able to be connected to other neurons. For example,

an output neuron can connect to an input neuron, consequently configuring a

recurrent neural network.

As we previously described, agent’s behavior is a consequence of the body

and controller configuration, and the environment perturbation. If a specific

sensor is enabled, the street light will be able to sense its specific variable, as

we described in Figure 4.4. For example, as shown in Figure 4.7, if the motion

sensor is enabled, the agent will be able to calculate the flow of people in the

environment. In the same way, if it has a wireless microphone, it will be able

to receive communication signals from the other street lights.

Based on its outputs, the wireless speaker and the light switch apparatus,

actions that can be taken by this agent are: “conversing with neighboring

streetlights” and “activating light”. For example, if an agent is able to activate

the light, how many levels of brightness can this agent generate? As shown, to

activate the light, the agent must select one of the following substates: OFF,

DIM or ON. This selection depends on the results originated at the Decision

state, as we explained in subsection 4.3.2.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 4. Fundamentals of Reconfigurable Embodied Agents 49

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

State4

Environment

Context 1set

Context

LightingOFF

Day

Night

Street Light - Embodied Agent

Street Light Configuration

Body

enableddisabled

Inputs

Outputs

Lighting Sensor

enableddisabled

H

Wireless Speaker

Motion Sensor

H disabled enabled

Wireless Microphone

H disabled enabled

Light Switch

H disabled enabled

H disabled enabled

Street Light Behavior

Perception

sensing ambient brightness

calculating people flow

receiving data from the neighboring streetlights

Effector

Decision

conversing with neighboring streetlights

activating light

OFF DIM ONH
select

Environment

perturb

perturb

StateMachine6::StatechartStreetLight

Figure 4.7: The designed autonomous street lights exploiting the proposed
reference model for the Agent’s Behavior component.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

5
Approaches and their Applications

In this chapter, we present the approaches that we created to design and

test reconfigurable embodied agents based on our proposed reference model.

In accordance with the questions that we raised in Section 1.3, this chapter

has the following sections: one to describe the (i) software framework for the

development of embodied agents to IoT applications; one to describe the (ii)

architecture to configure embodied agents according to the environment in

which they are situated; and another one for the (iii) approach for testing

embodied agents. Each one of the sections has a description of the approach

and an evaluation subsection.

In each section, we summarize how the proposed approach adheres to the

proposed reference model by refining the main statechart components.

5.1
Framework for IoT Embodied Agents

In this section, we answer the question RQ2. How to design and

implement a software framework to support the development of

embodied agents?. Part of the content of this section is published in

(Nascimento and Lucena, 2017).

Based on the Google Trends tool (Google, 2018), the Internet of Things

(IoT) (Atzori et al., 2012) is emerging as a topic that is highly related to phys-

ical agents and machine learning. In fact, the use of learning agents has been

proposed as an appropriate approach to modeling IoT applications (Nasci-

mento and Lucena, 2017). These types of application address the problems

of distributed control of devices that must work together to accomplish tasks

(Atzori et al., 2012). This has caused agent-based IoT applications to be con-

sidered for several domains, such as health care, smart cities, and agriculture.

For example, in a smart city, software agents can autonomously operate traffic

lights (Nascimento and Lucena, 2017; Santos et al., 2017), driverless vehicles

(Herrero-Perez and Martinez-Barbera, 2008) and street lights (Nascimento and

Lucena, 2017).

We developed a novel software framework to instantiate different appli-

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 51

cations based on IoT embodied agents, named the Framework for the Internet

of Things (FIoT) (Nascimento and Lucena, 2017). Using this framework, we

prototyped four IoT agent-based applications (Nascimento et al., 2015; Nasci-

mento Marx Leles Viana, 2016; Nascimento and Lucena, 2017; Nascimento and

Lucena, 2017).

5.1.1
IoT Embodied Agents

According to the description about embodied agents provided in Section

2.2, Figure 5.1 illustrates an IoT embodied agent in a scenario of autonomous

cars. In this example, the body of the agent is a car with four wheels, GPS,

headlights, etc. As described above, an embodied agent must have a local

analysis architecture to sense the environment and behave accordingly. In such

example, the autonomous car uses an artificial neural network. There is an

input neuron for each one of the car’s sensors and an output neuron for each

one of the motors and actuators. The neuron output values may determine the

direction of the wheels and whether the car turns on the headlights.

wheels headlights speaker

radar vision GPS microphoneground

Figure 5.1: An example of an IoT embodied agent.

5.1.2
Description of the Framework

We developed an agent-based model as a foundation for developing

different kinds of application for IoT. Our approach is completely based

on MAS and artificial intelligence paradigms such as neural networks and

evolutionary algorithms. Our goal is to provide mechanisms that recognize and

manage things in the environment automatically. As depicted in Figure 5.2,

our model consists of three layers: physical (L1), communication (L2), and

application (L3). Each thing in the environment (physical layer) is recognized

and controlled by agents in the application layer.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 52

Figure 5.2: An agent-based model to generate IoT applications.

The physical layer consists of simulated or real devices (also named smart

things/objects) and environments. In order to model the physical layer, the

project designer has to define the features of smart things as well as the

features of their surrounding environment. The designer must decide on the

environmental conditions (i.e. the variables of the Environment component of

the embodied agent statechart) that need to be monitored such as temperature,

relative humidity or traffic. Once these conditions are chosen the designer can

specify performance criteria for the smart things that collect data or make

changes to the environment.

The communication layer specifies the communication among agents in

the application layer. Each smart thing has one address, so an agent can access

this address to obtain and set the necessary information to control the thing.

We suggest the Java Agent Development Framework (JADE) (Bellifemine et

al., 2007) and its variants (JADEX, LEAP) to implement the communication

layer among agents and smart things in order to address heterogeneous devices

such as PCs, PDAs, resource constrained-devices or Smartphones.

Agent-Based Model

The application layer uses a MAS to provide services, such as collecting,

analyzing and transmitting data from several sensors to the Internet and back

again. Basically, FIoT supports the development of three types of agents:

(i) Manager Agents; (ii) Adaptive Agents; and (iii) Observer Agents. The

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 53

primary role of the Manager Agent is to detect new things that are trying

to connect to the system and make that connection. Adaptive Agents control

things at the scenario and must execute three key activities in sequence,

namely: (i) collect data from the thing (i.e. perception); (ii) make decisions;

and (iii) take actions (i.e. effector). In short, an Adaptive Agent represents

the behavior of an embodied agent, executing the actions described in the

Behavior component of the embodied agent statechart (see statechart 4.4).

The Observer Agent examines the environment to determine if the system

is meeting its global goals, executing the actions of the “Task Evaluation”

component (see statechart 4.5). When the actions of agents are far from what

an Observer Agent expects, it executes a supervised or unsupervised learning

method, such as back-propagation or a genetic algorithm, to adjust agents’

controller.

Agent Reconfiguration

The process of adjusting an agent controller consists of generating a new

set of weights for the neural network that has been used by the embodied

agents, and then evaluating how agents will behave in the environment. The

Observer Agent sets their neural networks with the configuration that conforms

to the embodied agents’ desired global action. While the Observer Agent

evaluates the group of agents and optimizes this neural controller accordingly,

we have a group of embodied agents using the neural controller to take

decisions.

In this current version, this agent could change only the neural weights.

Based on the proposed statecharts, our further goal is to extend the Observer-

Agent in order to allow it to change at runtime the whole ANN’s structure.

Therefore, during an experiment, a collection of embodied agents can start

the experiment, for example, using a neural network with three sensors, two

hidden layers and a hyperbolic tangent function as the transfer function of

all neurons; and finish this same experiment using a totally different neural

network, with one sensor, one hidden layer and a sigmoid function.

The Observer Agent is tightly coupled to the application being developed.

The evaluation process has to be implemented according to the expected global

solution. For example, if an application for automobile traffic control has the

goal of reducing urban traffic congestion, the evaluation may be performed

based on the number of vehicles that had finished their routes in a specific

period. Another variable activity is the generation of new configurations for

neural networks, which depends on the applied adaptation technique.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 54

Details of FIoT

As presented in subsection 5.1.2, our model proposes the use of JADE to

support the communication among software agents and devices at the physical

layer. FIoT extends JADE, a Java framework to implement MAS through

the development of JADE agents, the behavior of agents, the controller to

be used by Adaptive Agents, and the adaptive process to be executed by the

Observer Agent. In addition, the system gives support to different interface

communication message systems, such as sockets and ACL. We present the

key FIoT classes (Sommerville, 2004) of the main packages.

The class diagram depicted in Figure 5.3 illustrates the FIoT classes

associated with the creation of agents and their execution loops. As described

before, the FIoT agent classes are the ManagerAgent, ObserverAgent and

AdaptiveAgent classes, which extend the FIoTAgent class. Then, FIoT agents

can access and make changes to the list of controllers (ControllerList class).

This list stores all controllers already created by the ManagerAgent for each

type of smart thing, such as a chair with one temperature sensor, lamp with

one presence sensor and one alarm actuator.

 pkg

+ AdaptiveAgent(d : Device) : void
+ getControllerFromList() : Controller

- attribute0 : int
- nameController : String

<<kernel>>
AdaptiveAgent

<<hotspot>>

ObserverAgent

+ setup() : void

<<JADE>>
Agent

<<JADE>>

OneShotBehavior

+ action() : void

<<abstract>>
Behavior

- ip : String

<<kernel>>
GodAgent

- controllerList : ControllerList
- world : AgentList

<<kernel>>

FIoTAgent

<<JADE>>
SequentialBehavior

+ startExecution(behaviors : List<Behavior>) : void

<<abstract>>
ExecutionLoop

+ startExecution(d : Detec, c : ControllerProvision, a : CreateAgent) : void

<<kernel>>

GodLoop

+ startExecution(e : Evaluate, newController : ChangeControllers) : void

<<hotspot>>
ObserverLoop_

+ startExecution(c : Collect, d : Decision, e : Effector) : void

<<kernel>>
AdaptiveLoop

 <<kernel>>
ManagerAgent

 <<kernel>>
 ManagerLoop

Figure 5.3: Class diagram of FIoT - Agents.

All agents execute sequential behaviors, named as ExecutionLoop: Man-

agerLoop, AdaptiveLoop and ObserverLoop classes. The sequential behavior

is a JADE behavior that supports the composition of activities (Bellifemine

et al., 2007). Thus, the ExecutionLoop is a sequence of smaller actions. For

example, for Adaptive Agents, these execution loops are composed of collect,

decide and effect activities.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 55

The class diagram depicted in Figure 5.4 illustrates the collection of be-

haviors already developed. Activities such as evaluation and controller adapta-

tion are examples of hot spots. Thus, new strategies for evaluation and adap-

tation can be developed to be used by agents. The Manager Agent’s execution

loop performs three behaviors: “Detect,” “CreateAgent,” and “ControllerPro-

vision.”
 pkg

<<hotspot>>
<<alternative>>

Evolutionary

+ action() : void
+ sendMessage(msg : Msg) : void

+ setDeviceOutput(output : Msg) : void

<<kernel>>

Effector

<<JADE>>
OneShotBehavior

+ action() : void

<<abstract>>
Behavior

- device : Device

<<kernel>>
Detec

+ create(device : Device) : AdaptiveAgent

<<kernel>>
CreateAgent

+ create(device : Device) : Controller

<<kernel>>
ControllerProvision

- controllerID : String
- ip : String

<<kernel>>
Device

List of Controllers: Each
id indicates the type of

sensors and actuators
that device has

GodAgent
Behaviors

AdaptiveAgent

Behaviors

+ action() : void

+ readMessage() : Msg

+ readDeviceInput() : Msg

<<kernel>>
Collect

- list : ControllerList

<<hotspot>>
ChangeControllers

<<hotspot>>

Evaluate

ObserverAgent
Behaviors

+ getNewController() : Controller

<<interface>>

<<hotspot>>

Adaptation

<<hotspot>>

<<alternative>>

Backpropagation

+ action() : void

+ getControlOutput(input : float[]) : float[]

<<kernel>>
Decision

ManagerAgent

Figure 5.4: Class diagram of FIoT - Behaviors.

While ObserverAgents access the ControllerList to adapt controller con-

figurations through ChangeControllers behavior, an AdaptiveAgent uses the

ControllerList to get its controller, set data input, and obtain the calculated

output.

The class diagram depicted in Figure 5.5 illustrates the controller classes.

Agents as virtual homogeneous things can use the same controller to make

decisions. For example, where similar smart lamps have to be managed, the

same ANN controller can be used by Adaptive Agents. The ManagerAgent

stores the smart lamp controller in ControllerList as “lampNeuralNetwork.”

If there is another group of devices, the ManagerAgent has to use a different

controller.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 56

 pkg

+ change(configuration[] : float[]) : void
+ createController(controlConfiguration : File) : void
+ getOutput(input[] : float[]) : float[]

<<hotspot>>
<<interface>>

Controller

+ setWeight(weight[] : float[]) : void

<<hotspot>>
<<alternative>>

NeuralNetwork
<<hotspot>>

<<alternative>>

StateMachine

+ getController(typeAgent : String) : void
+ editController(typeAgent : String, configuration : File) : void
+ addController(typeAgent : String, configuration : File) : void
+ getInstance() : void

<<kernel>>
ControllerList

0..*

- controllerList : ControllerList
- world : AgentList

<<kernel>>
FIoTAgent

Figure 5.5: Class diagram of FIoT - Controllers.

5.1.3
Instances of the FIoT

The frozen spots are part of the FIoT kernel and each of the proposed

applications will have the following modules in common:

– Detection of devices by the ManagerAgent

– The assignment of a neural network to a particular Adaptive Agent by

the ManagerAgent

– Creation of Agents

– Data Collection execution by Adaptive Agents

– Making decisions by Adaptive Agents

– Execution of effective activity by Adaptive Agents

– The communication structure among agents and devices

Some features are variable and may be selected/developed according to

the application type, as follows:

– Agent controller configuration

– Evaluation by the Observer Agent

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 57

– Neural Network adaptation by the Observer Agent

Thus, to create an FIoT instance, a developer has to implement/choose:

(i) a neural network; (2) an adaptive technique to train the neural network; and

(iii) an evaluation process such as a genetic algorithm that performs evaluation

via a fitness function. We implemented FIoT to support the use of different

neural network types, since we provided an abstract controller class. For

example, a framework user can implement a recurrent neural network (a type

of neural network that propagates data forward, but also backwards) and use

an evolutionary algorithm to evolve its structure and transition probabilities.

Thus, it is possible to generate applications using different configurations. A

framework user should select a configuration that works better toward solving

a given problem.

5.1.4
Evaluation: Examples of Applications

We evaluate FIoT by implementing its hot spots or flexible points to

generate three different applications. We consider the following IoT applica-

tions or instances in the FIoT evaluation process: (i) quantified fruits; and (ii)

smart street light. This section presents a brief description of each example

by completing the hot spots and illustrating how the generated applications

adhere to the proposed framework.

5.1.5
Application I: Quantified Fruits

As suggested in (Swan, 2012), the concept of Quantified Self (QS)

represents the capacity for connected objects to self-measure and self-monitor

their human owner. Examples are connected watches or phones that measure

heart rate, pressure, exercising habits, etc. Capacities for analysis, patterns

detection and prediction (using statistical analysis and machine learning

techniques) may be included in order to infer personalized monitoring and

diagnostic, e.g., for health monitoring.

In (Briot et al., 2016), we investigate the adaptation of this idea to

arbitrary things, therefore named Quantified Things (Nascimento et al., 2015).

Some early examples are Quantified Cars (Swan, 2015), using the large

electronic monitoring and control facilities of a car to monitor, diagnose

and control various features of a car. Swan suggests the use of “QS car

chips” to collect cars automotive data and store these informations in a

cloud database. By using a mobile application, users could have access to

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 58

their car’s information, such as maintenance records, suggested and scheduled

maintenance, and take more accurate action as a result.

We have decided to address the case of agriculture food products. In

particular, the lifecycle of fruits has an important impact on its economy.

An important issue is indeed to minimize the loss of fruits too mature to

be consumed and at the same time to minimize the risk of shortage of

products for the consumers. This is specially true in the case of bananas, a

fruit having a relatively short ripening period, and very much depending on

various conditions (temperature, humidity, light, aeration) (Johnson et al.,

2008). Therefore, important decisions must be taken at various steps of the

lifecycle: when to best harvest the fruits, depending of the expected travel

(type and duration) to the consumer, how to best transport them, how to store

them, at a large scale in a storage or a grocery store, down to the consumer

house, etc.

In order to explore these issues, we have designed a prototype multi-

agent architecture for Quantified Fruits. Its objective is self-monitoring and

self-prediction of fruit maturation. We have tested the architecture in the case

of bananas and have evaluated it as a proof of concept. A design for this

architecture is presented using FIoT, as depicted in Figure 5.6.

Figure 5.6: An instance of FIoT to create “Quantified Fruit.”

Table 5.1 shows how the “Quantified Fruit” application adheres to

the proposed framework by extending the FIoT flexible points. The hot

spot “making evaluation” is developed for this application as an individual

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 59

evaluation. The Observer Agent maintains a data set containing input from

Adaptive Agents and neural predictions. Based on this historical data, for each

adaptive agent execution, the Observer Agent evaluates if an individual result

requires a collective adaptation.

Table 5.1: Case I: Flexible Points

Framework Application
Controller Three Layer Neural Network

Making Evaluation
Individual Evaluation: for each agent evaluation,
the Observer Agent concludes if all Adaptive
Agents need to adapt or not

Controller Adaptation Supervised Learning (Backpropagation)

Agent Body

Embodied agents in this application encapsulate an Arduino microcon-

troller (Arduino) and its 5 sensors, respectively measuring: methane, hydrogen,

temperature, humidity, and light. We have selected these sensors based on some

works (Boe and Salunkhe, 1967; Johnson et al., 2008) that investigate various

factors that interfere on fruit’s perishability.

Agent Controller

The agent controller encapsulates an artificial neural network (ANN)

used for prediction. We have decided to use an artificial neural network (ANN)

architecture for the prediction module. The reason is as follows: ANNs are

well known architectures and they have proven their efficiency and moreover

versatility. As opposed to linear or polynomial regression modules where one

has to a priori select a model (linear, quadratic, cubic, including product of

features, etc.), the model of a neural network is generic enough although some

configuration has to be decided (e.g. the number of hidden layers, the number

of units of the hidden layer(s)).

The neural network includes an input layer with 5 units (corresponding to

the 5 parameters produced by the 5 sensors), one hidden layer with 4 units and

an output layer with one unit (corresponding to the number of days predicted).

Task Evaluation - Observer Agent

The Observer Agent encapsulates both backpropagation and prediction

error minimization algorithms for training the neural network (Rumelhart et

al., 1986). In addition, it also encapsulates a data base containing the various

data of the experiments, that is shared by all agents.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 60

Our current method for training the neural network (adjusting the

weights of the neuron connexions in order to minimize the error (differences)

between predicted and target values) is quite standard: 1) using backprop-

agation algorithm (to compute the gradients) (Rumelhart et al., 1986); 2)

combined with an algorithm to minimize the cost function (prediction error)

– we have tried out batch gradient descent as well as generic optimization

algorithms (from off-the-shelf libraries).

Note that, in addition to traditional off-line learning approach, we also ex-

perimented with a (simplified) incremental learning approach, where Adaptive

Agent pro-actively self-assesses its prediction accuracy and if necessary re-

quests ObserverAgent to incrementally update its prediction model by launch-

ing a new learning phase on the new example(s) (in a similar way to on-line

learning).

Experimental Setting

The user will try various ways for storing a banana, taking four condition

parameters into account: (i) dark (i.e. in a closed or open box); (ii) room (i.e.

the box being stored in a fridge or at room temperature); (iii) rotten fruit

(i.e. in a box alone or putting together with a rotten); and (iv) ripe fruit (i.e.

putting together with a ripe fruit).

Below, we detail four of the possible settings for storing a banana

(summarized at Table 5.2 and depicted at Figure 5.7):

(a) In an open box, at room temperature, alone; (b) In an open box,

together with a rotten fruit; (c) In the fridge, with a ripe fruit; (d) In a closed

box, at room temperature, with a rotten fruit.

Table 5.2: Configuration of experiments at Figure 5.7.

Experiment Box Room
Rotten

Fruit

Ripe

Fruit

open close room fridge yes no yes no

(a) X X X X

(b) X X X X

(c) X X X X

(d) X X X X

For each setting, a user creates a new experiment on his smartphone

user interface. Then, he triggers the measurement of the parameters (light,

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 61

Figure 5.7: Examples of scenarios.

temperature, methane, hydrogen and humidity), which will be recorded in the

database. He then later checks (usually every day) the maturation of the fruit

and reports on the interface when the starting maturation occurs. This process

was essential to elaborate an initial database to improve system’s predictions.

In practice, we have conducted several experiments in parallel, putting a dozen

of bananas in different settings and monitoring in parallel their respective

maturation process.

Following standard methodology in machine learning, we have parti-

tioned our dataset into a training set and a testing set.

Training Set

Table 5.3 shows a subset of the training set used, which represents

the data collected from the experiments illustrated at Figure 5.7. At the

beginning of each experiment, the embodied agent collects the measured values:

temperature (abbreviated Temp.), which is registered in Celsius (C), relative

humidity (RH), hydrogen gas (Hyd.), methane gas (Met.), and luminosity

(Lum.). Values of gas sensors are recorded according to the sensor output

value (V.). At the end of each experiment, the user reports the “actual” fruit

lifespan (this information is subjective since in current experiments naked-eye

observation determines it).

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 62

Table 5.3: Subset of the training set.

Temp RH Hyd Met Lum Lifespan

27.62 70.22 2 184.0 15.0 14

28.02 72.53 8 275.0 10.0 5

27.81 72.75 3.0 258.0 3.0 10

Test Set

Table 5.4 shows results for a subset of the test set. This example, which

was performed outside the fridge and in an open box, shows a good prediction.

The system predicted thirteen days, and the user reported that the banana

spoiled in approximately twelve days.

Table 5.4: Subset of the test set.

Temp RH Hyd Met Lum
Lifespan

Observed Predicted

28.21 70.24 3.0 183.0 16.0 12 13

Experimental Results: Measuring Accuracy

We believe that these first experiments are promising, the prediction

module showing good prediction accuracy. Obviously, we need to conduct more

experiments with different settings to collect more data.

We have conducted some analysis of our prediction module. Figure 5.8

shows the validation curve, which compares the evolutions of the prediction

error for the training set (we will name it training error, depicted in a blue solid

line) and of the prediction error for the cross validation set (cross validation

error, depicted in a green dashed line) for various (increasing) values of λ

(the regularization parameter used to control overfitness). The figure shows

that 0.01 is a good value for λ as cross validation error is minimal. For a

smaller value, there is some variance (overfitness) because the training error

is almost null and the cross validation error is significant, showing the poor

generalization of the model. For a larger value, the cross validation error

is increasing (note that the training error is also increasing), showing an

increasing bias (underfitness).

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 63

Figure 5.8: Validation curve.

Figure 5.9 shows the learning curve, i.e., the evolution of prediction error

depending on the size of the training set. The figure shows that the training

error is almost null and that the cross validation error stays low, confirming

that the model has low bias and low variance. These preliminarily analyses

are encouraging. We are conducting more experiments in order to collect more

data in order to further improve the model.

Figure 5.9: Learning curve.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 64

5.1.6
Application II: Smart Street Lights

In order to evaluate our proposed framework to create Internet of Things

applications based on embodied agents, we developed a smart street light

application.

The overall goal of this application is to reduce the energy consumption

and maintain the maximum visual comfort in illuminated areas. For this

purpose, we provided each street light with ambient brightness and motion

sensors, and an actuator to control its light intensity. In addition, we also

provided street lights with wireless communicators. Therefore, they are able

to cooperate with each other in order to establish the most evaluable routes

of the passers-by and to achieve the goal of minimizing energy consumption.

We used an evolutionary algorithm to support the design of this system’s

features automatically. By using a genetic algorithm, we expect that a policy

for controlling the street lights, with a simple communication system among

them, will emerge from this experiment. Therefore, no system feature such

as the effect of ambient brightness on light status changes was specified at

design-time.

The training process can occur in a simulated or in a physical environ-

ment. However, many devices could be damaged if we were to use real equip-

ment, since several configurations must be tested during the training process.

Therefore, to execute the training algorithm, we decided to simulate how smart

street lights behave in a fictitious neighborhood. After the training process, we

transferred the evolved neural network to physical devices and observed how

they behaved in a real scenario.

Table 5.5 summarizes how the “Street Light Control” application will

adhere to the proposed framework, while extending the FIoT flexible points.

Table 5.5: FIoT’s Flexible Points

FIoT Framework Street Light Control Application
Controller Three Layer Neural Network

Making Evaluation

Collective Fitness Evaluation: Test a pool of
candidates to represent the network parameters.
For each candidate, it evaluates the collection
of smart street lights, comparing fitness
among candidates

Controller Adaptation
Evolutionary Algorithm: Generate a pool of
candidates to represent the network parameters

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 65

Experimental Setting

In this subsection, we describe a simulated neighborhood scenario. Figure

5.10 depicts the elements that are part of the application namely, street lights,

people, nodes and edges. We modeled our scenario as a graph, in which a node

represents a street light position and an edge represents the smallest distance

between two street lights.

Figure 5.10: Simulated Neighborhood.

The graph representing the street light network consists of 18 nodes and

34 edges. Each node represents a street light. In the graph, the yellow, gray,

black and red triangles represent the street light status (ON/DIM/OFF/Bro-

ken Lamp). Each edge is two-way and links two nodes. In addition, each edge

has a light intensity parameter that is the sum of the environmental light

and the brightness from the street lights in its nodes. Our goal is to simulate

different lighting in different neighborhood areas.

People walk along different paths starting at random departure points.

Their role is to complete their routes, reaching a destination point. A person

can only move if his current and next positions are not completely dark. In

addition, we also supposed that people walk slowly if the place is partially

devoid of light. For simulation purposes, we chose four nodes as departure

points (yellow nodes) and two as destinations (red nodes). We started with

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 66

ten people in this experiment. We also configured that 20% of the street lights

lamps will go dark during the simulation.

Agent Body

Each street light in the simulation has a micro-controller that is used to

detect the approximation of a person, interact with the closest street light, and

control its lights. A street light can change the status of its light to ON, OFF

or DIM, as depicted in Figure 5.11.

Lighting

Presence

Data collected from
the closest street light

Light Decision(Dark/DIM/Light)

(Yes/No)

(0.0/0.5/1.0)

(OFF/DIM/ON)

(0.0/0.5/1.0)

Wireless
Transmitter

Listening
Decision
(Yes/No)

Previous Listening
Decision

(Yes/No)

Figure 5.11: Variables collected and set by streetlights.

Smart street lights have to execute three sequential tasks: data collection,

decision-making and action enforcement, as depicted in Figure 5.12. The first

task consists of receiving data related to people flow, ambient brightness, data

from the neighboring street lights and current light status. The second task

consists of analyzing collected data and making decisions about actions to be

enforced. To make decisions, smart street lights use a three-layer feedforward

neural network with a feedback loop (Haykin, 1994). Feedback occurs because

one or more of the neural network’s outputs influence the next neural network’s

inputs. The last task is the action enforcement, which consists of setting the

value of output variables, such as: wirelessTransmitter, a signal value to be

transmitted to neighboring agents; and lightDecision, that activates the light’s

OFF/DIM/ON functions.

Agent Controller

We instantiated FIoT’s controller by implementing a three-layer neural

network controller for our smart street lights (see Figure 5.13).

The input layer includes four units that encode the activation level

of sensors and the previous output value of listeningDecision. The output

layer contains three output units: (i) listeningDecision, that enables the smart

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 67

Figure 5.12: A streetlight uses a neural network to make decisions based on
collected data.

Figure 5.13: The neural network controller for smart street lights: zeroed
weights (FIoT’s Application View).

lamp to receive signals from neighboring street lights in the next cycle;

(ii) wirelessTransmitter, a signal value to be transmitted to neighboring

street lights; and (iii) lightDecision, that switches the light’s OFF/DIM/ON

functions.

The middle layer of the neural network has two neurons connecting the

input and output layers. These neurons provide an association between sensors

and actuators, which represent the system policies that can change based on

the neural network configuration.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 68

Task Evaluation and Training the Neural Network

The weights in the neural network used by the smart street lamps vary

during the training process, as the system applies a genetic algorithm to find

a better solution. Figure 5.14 depicts the simulation parameters that were

used by the evolutionary algorithm. We selected these parameters values (i.e

number of generation and tests, population size, mutation rate, etc.) according

to known experiments of evolutionary neural networks that we found in the

literature (Marocco and Nolfi, 2007; VIDE and Nolfi, 2006).

Figure 5.14: Configuration file to evolve the neural network via genetic algo-
rithm using FIoT.

During the training process, the algorithm evaluates the weight possi-

bilities based on the energy consumption, the number of people that finished

their routes after the simulation ends, and the total time spent by people to

move during their trip. Therefore, each weights set trial is evaluated after the

simulation ends based on the following equations:

pPeople =
(completedPeople × 100)

totalPeople
(5-1)

pEnergy =
(totalEnergy × 100)

(11×(timeSimulation×totalSmartLights)
10

)
(5-2)

pTrip =
(totalTimeTrip × 100)

((3×timeSimulation
(2)

)× totalPeople)
(5-3)

fitness = (1.0× pPeople)− (0.6× pTrip)− (0.4× pEnergy) (5-4)

in which pPeople is the percentage of the number of people that com-

pleted their routes as of the end of the simulation out of the total number

of people in the simulation; pEnergy is the percentage of energy that was

consumed by street lights out of the maximum energy value that could be

consumed during the simulation. We also considered the use of the wireless

transmitter to calculate energy consumption; pTrip is the percentage of the

total duration time of people’s trips out of the maximum time value that their

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 69

trip could spend; and fitness is the fitness of each representation candidate

that encodes the neural network.

0

10

20

30

40

50

60

70

80

90

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

Generations

Trainning	Results	- Best	Individuals

BEST	FITNESS

ENERGY	%

TRIP	%

PEOPLE	%

Figure 5.15: Simulation results - Most-Fit from each generation.

Normally, the performance of the most-fit individual is better than the

others. Figure 5.15 illustrates the best individual from each generation (i.e. the

candidate with the highest fitness value). As shown, the best individuals from

the generations tend to minimize energy consumption and find an equilibrium

between energy consumption and the trip time. We selected the best individual

from the last generation to investigate its solution, as shown in the subsection

(5.1.6).

Experimental Results: Evaluating the Best Candidate

After the end of the evolutionary process, the algorithm selects the set

of weights with the highest fitness (equation 5-4). Figure 5.16 depicts the

evolved neural network configured with the best set of weights found during

the evolution.

One disadvantage of using neural networks combined with evolutionary

algorithms is to understand and explain the behaviors that were automatically

assigned by the smart things. Therefore, we executed the simulated street

lights using the evolved network in order to generate logs and extract the

rules that are implicit in patterns of the generated input-output mapping. To

generate these logs, we used the runtime monitoring platform that we proposed

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 70

Figure 5.16: The Evolved Neural Network to be used as a controller for real
Street Lights (FIoT’s Application View).

in (Nascimento et al., 2017) to test distributed systems, as described in Section

5.3.

After analyzing logs, we could realize the rules that were created by the

evolved neural network in order to understand why street lights decided to

communicate and switch the lights ON. The code below exemplifies some of

these rules:

(I0 = 1.0 ∧ I1 = 0.5 ∧ I2 = 0.0 ∧ I3 = 0.0)⇒

(Out0 = 0.0 ∧Out1 = 1.0 ∧Out2 = 0.0)
(5-5)

(I0 = 1.0 ∧ I1 = 0.5 ∧ I2 = 1.0 ∧ I3 = 0.0)⇒

(Out0 = 0.0 ∧Out1 = 1.0 ∧Out2 = 0.5)
(5-6)

(I0 = 0.0 ∧ I1 = 0.0 ∧ I2 = 0.0 ∧ I3 = 0.0)⇒

(Out0 = 0.5 ∧Out1 = 0.0 ∧Out2 = 0.0)
(5-7)

(I0 = 1.0 ∧ I1 = 0.0 ∧ I2 = 0.0 ∧ I3 = 0.5)⇒

(Out0 = 0.0 ∧Out1 = 1.0 ∧Out2 = 0.5)
(5-8)

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 71

in which the variables are:

I0 ≡ previousListeningDecision, I1 ≡ lightSensor ,

I2 ≡ motionSensor , I3 ≡ wirelessReceiver ,

O0 ≡ wirelessTransmitter ,O1 ≡ listeningDecision,

O2 ≡ lightDecision

(5-9)

Based on the generated rules and the system execution, we could observe

that only the street lights with broken lamps emit “0.5” by its wireless

transmitter (rule 5-7). In addition, we also observed that a street light that is

not broken switches its lamp ON if it detects a person’s approximation (rule

5-6) or receives “0.5” from wireless receiver (rule 5-8) .

Prototyping the Smart Street Light Device

As depicted in Figure 5.17, the prototype of the smart street light is

composed of an Arduino (Arduino) and the following sensors and actuators:

(i) HC-SR501 (a device that detects moving objects, particularly people.

The detection distance is slightly shorter - maximum of 7 meters); LM393

light sensor (a device to detect the ambient brightness and light intensity);

nRF24L01 (a wireless module to allow one device to communicate with

another); and (iii) LEDS (the representation of a lamp).

Figure 5.17: Prototyping the smart street light.

We put two LEDs in this circuit. Our goal is to simulate light intensity.

Therefore, if a smart street light decides to set its light intensity to the

maximum, both LEDs will be on. If the light intensity is medium, one LED

will be on and the other LED will be off.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 72

Transferring the evolved neural network to physical devices

After the neural network has been evolved, we codified it into the

Arduino. We show below the code in C++ language that operates as a neural

network inside the Arduino:

double fSigmoide(double x){
double output = 1 / (1 + exp(−x));

return output;

}

double calculateHiddenUnitOutput(double w[4]){
double H = previousListeningDecision∗w[0] +

lightSensor∗w[1]+motionSensor∗w[2]+wirelessReceiver∗w[3];

double HOutput = fSigmoide(H);

return HOutput;

}

double calculateOutputDecisions(double w[2], double h0, double h1){
double outputSum = h0∗w[0] + h1∗w[1];

double output = fSigmoide(outputSum);

return output;

}

As we described in Section 5.1.6, each smart street light has to execute

three tasks. Accordingly, we present below the main parts of the C++ code

that the Arduino executes to attend to the tasks of collecting data, making

decisions and enforcing actions:

– Collecting data:

void getInputs(){
lightSensor = readLightSensor();

motionSensor = readMotionSensor();

previousListeningDecision = listeningDecision ;

if (listeningDecision ==1){
receivedSignal = receiveWirelessData();

}
else

receivedSignal = 0;

}

– Making Decision (calculating output decisions based on code of the

evolved neural network functions - see Section 5.1.6):

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 73

double weightsH0[4] = 1.2, -0.8, 1.6, -0.5;

double weightsH1[4] = 1.6, -0.8, 1.5, -0.3;

double H0 = calculateHiddenUnitOutput(weightsH0);

double H1 = calculateHiddenUnitOutput(weightsH1);

...

double weightsTransmitterOutput[2] = -0.6, -0.2 ;

double transmitterOutput = calculateOutputDecisions(weightsTransmitterOutput,

H0, H1);

...

double weightslisteningDecision [2] = -0.9, -0.7;

double listeningDecisionOutput =

calculateOutputDecisions(weightslisteningDecision, H0, H1);

...

double weightslightDecision [2] = 1.7, -0.4;

double lightDecisionOutput = calculateOutputDecisions(weightslightDecision, H0,

H1);

if (lightDecisionOutput>threshold2){
lightDecision = 1.0;

}
else{
if (lightDecisionOutput>threshold1){
lightDecision = 0.5;

}
else lightDecision = 0.0;

}

– Enforcing action:

void setOutputs(){
...

sendWirelessData(transmitterSignal);

...

writeLed(lightDecision) ;

...

}
void writeLed(double value){
if (value == 1){
digitalWrite(ledPin, HIGH);

digitalWrite(led2Pin, HIGH);

}
else if (value == 0.5){
digitalWrite(ledPin, HIGH);

digitalWrite(led2Pin, LOW);

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 74

}
else{
digitalWrite(ledPin, LOW);

digitalWrite(led2Pin, LOW);

}
}

Testing Physical Smart Street Lights in a Real Scenario

In a controlled real scenario, we put three prototypes of the smart

street lights using the evolved neural network into operation. We distributed

them in the scenario as shown in Figure 5.18. To compare the behavior of

1

2

3

Smart	Street	Light	Prototype

Person

7 m

5 m

5m

Smart	Street	Light	Prototype
with	broken	lamp
Arduino	with	the	evolved	
neural	network

Figure 5.18: Real Scenario where we tested a network of three smart street
lights prototypes.

physical smart street lights to the simulated ones, we also collected logs from

the Arduinos1. As we could observe, the behavior of the physical smart street

lights was similar to the simulated ones: it switches lamps ON if it receives a

signal different from 0.0 or detects the approximation of a person. However, we

cannot assure that a street light is receiving the signal from the closest street

light. In addition, different from the simulator, the real scenario is a distributed

environment composed of asynchronous components with different clocks. But,

as we are leading with a controlled environment with few resources, we cannot

observe significant differences.

1All files that were generated during the development of this work, such as genetic
algorithm files, log program and arduino code, are available at
http://www.inf.puc-rio.br/̃.nnascimento/streetlight.html

http://www.inf.puc-rio.br/~nnascimento/streetlight.html
DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 75

5.1.7
Discussion

We believe these preliminary results are promising. We proposed the

use of the embodied agents concept to model smart things. To illustrate, we

modeled and implemented smart fruit bowls and smart street lights. Each

embodied agent had sensors and actuators to interact to the environment,

and used an artificial neural network as an internal controller. In addition,

we used a supervised learning algorithm to allow fruit bowls to learn about

fruit spoilage process, and we used a genetic algorithm to allow street lights

to self-develop their own behaviors through a non-supervised training. As a

result of the second experiment, a group of initially non-communicating smart

street lights developed a simple communication system. By communicating,

the group of street lights seems to cooperate in order to achieve collective

targets. For example, to maintain the maximum visual comfort in illuminated

areas, the street lights used communication to reduce the impact of broken

lamps.

We provided street lights with the possibility of disabling the feature

of receiving signals from neighboring street lights. In an initial instance, we

did not consider broken lamps. Therefore, as the action of communication

increases energy consumption, the street lights decided to disable this feature.

However, when we added broken lamps to the scenario, during the evolutionary

process, the solution of enabling a communication system among street lights

provided better results. Therefore, as shown in the rules generated by the

evolved neural network, a smart street light takes lightSensor, motionSensor

and wirelessReceived inputs into account to make decisions. Thus, the best

solution does not ignore any of these parameters.

One advantage of engineering physical devices based on embodied cogni-

tion is that the found solution normally is sufficiently generic. To estimate how

generic is the approach, we simulated another neighborhood with a different

number of street lights and a different configuration map, then we applied this

best solution to this new scenario. The results showed that the evolved street

lights’ behavior does not vary based on the number of street lights, and the

lighting application continues functioning well even if we disable some street

lights in the scenario.

5.1.8
How the proposed framework adheres to the reference model

Table 5.6 shows how this proposed framework adheres to the proposed

reference model by concretizing the high-level statechart components. The

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 76

component “agent configuration” is developed for this approach as a recon-

figurable system that contains the characteristics that can be used to compose

the set of agents.

Table 5.6: Case I: Main statechart components.

Statechart Components Approach

Agent Configuration
Body

A configuration file describing the sensors
and actuators that will compose the
agent’s body

Controller

A configuration file specifying the
neural network. In addition,
agent’s controller
is represented by an abstract class,
making it possible to be adjusted
during the system execution

Agent Behavior

An specific agent, named AdaptiveAgent,
which acts based on the control loop and
represents the embodied agent behavior.
It reads data through the agent’s sensors,
makes decisions through the neural
network, and takes actions through
the agent’s outputs.

Environment
An independent application that
configures a dataset or scenario to be
interacted with embodied agents

Task Evaluation

An specific agent, named ObserverAgent,
which is responsible to evaluate the group
of agents and to adjust the neural
network that has been used by
this group of embodied agents

5.2
An Architecture for Embodied Agents Reconfiguration

In this section, we propose a self-configurable embodied agent approach

that allows to investigate how a collection of embodied agents can be configured

to deal with the system’s requirements and environmental changes. To meet

the system’s requirements (e.g. performance), this configuration consists of

testing the behavior of agents by using different subsets of body, behavior

and analysis architecture features. To deal with environmental changes, this

configuration consists of evolving or adapting the set of agents by adding or

removing features.

This investigation is associated to the following questions:

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 77

– RQ3. How to define an architecture to configure the body and controller

of the agents based on the environment variability?

– RQ3.1. What is the variability related to embodied agents and how can

this variability be represented?

– RQ3.2. How can we represent the effect of the relevant environment

changes on the reconfiguration of the embodied agents?

The ability of a software system to be configured for different contexts

and scenarios is called variability (Galster et al., 2014). According to Galster et

al. (2014), achieving variability in software systems requires software engineers

to adopt suitable methods and tools for representing, managing and reasoning

about change. Therefore, before defining an architecture to configure agents

based on the environment variability, we must investigate and represent which

kind of variabilities are related to this kind of agent and to the environment

in which it may be situated.

5.2.1
RQ3.1. What is the variability related to embodied agents and how can
this variability be represented? - Variability in Embodied Agents

There are several options for physical components and software behaviors

for the design of physical agents (Ayala et al., 2015). According to existing

experiments (Soni and Kandasamy, 2017) and our experience with embodied

agents (Nascimento and Lucena, 2017; Nascimento Marx Leles Viana, 2016;

Nascimento and Lucena, 2017), we introduce possible variants of an embodied

agent in (Nascimento et al., 2018). Our approach incorporates feature-oriented

domain analysis (FODA) (Pohl et al., 2005) notation to explore this variability.

According to the FODA notation, features can be classified as mandatory,

optional and alternative. Alternative features are not to be used in the same

instance.

In (Nascimento et al., 2018), we identified three main variation points

to handle in order to create an embodied agent: (i) the body variability (i.e.

number, types and brands of sensors and actuators); (ii) the complexity of the

behavior of the agent, which varies based on the physical components that are

operated by the agent (e.g. if this agent is able to communicate, the number of

signals agents are able to exchange); and (iii) the agent’s controller that allows

the agent to sense the environment and behave accordingly (e.g. if this agent

controller is a neural network, in terms of its architectural variability the type

of activation function and the number of neurons should be considered).

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 78

Body and Behavior Variability

The physical devices may vary in terms of the types of sensors, such

as temperature and humidity, and in terms of actuators, as depicted in the

feature diagram presented in Figure 5.19 . Each sensor can also vary in terms

of brands, changing such parameters as energy consumption and battery life.

Note that, depending on the application domain, this feature diagram may

contain different and more specific features. For example, to create smart street

light agents, we can provide a specific version of this feature model, discarding

some options of sensors, such as heart, EEG and pressure sensors.

Embodied	Agent’s	Body

Input

Output

Communication
Receiver

Communication
Transmitter

Distance

500	m 1	Km

Sensor

Motion

Light

Lamp

levels
of	light	intensity

2 3

Camera

TSL235R ColorPAL VCNL4000

Type

Temperature

Gas

CO2 H2 O2 Pressure

EEG

Heart

GPS

Humidity

Soil	Humidity

Text	data

Age Weight

Voice	recognition

Battery	life

IPS

Alarm

Wheels

Controller

Mandatory

Optional

Alternative

Or

Memory

Capacity

Data	Connection
Bluetooth

Radio
TCP/UDP	IP

Position

Description

Wind	speed

Figure 5.19: Feature model of embodied agents’ body.

The complexity of the behavior of the agent will vary based on the

physical components that are operated by the agent. For example, if an agent

is able to activate an alarm, which kinds of alerts can this agent generate?

If this agent is able to communicate, how many words is this agent able to

communicate? If this agent is able to control the temperature of a room, what

are the threshold values set to change the room’s temperature?

Controller Variability

In addition, we also need to deal with variants in agent architecture

that the agent uses to sense the environment and behave accordingly. For

example, this controller’s architecture can be a decision tree, a state machine

or a neural network. Many approaches (Marocco and Nolfi, 2007; Nascimento

and Lucena, 2017) use neuroevolution, which is “a learning algorithm which

uses genetic algorithms to train neural networks” (Whiteson et al., 2005)).

This type of network determines the behavior of an agent automatically

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 79

based on its physical characteristics and the environment being monitored.

A neural network is a well-known approach to provide responses dynamically

and automatically, and create a mapping of input-output relations, which may

compactly represent a set of “if..then” conditions (Nascimento and Lucena,

2017), such as: “if the temperature is below 10◦C, then turn on the heat.”

However, finding an appropriate neural network architecture based on the

physical features that were selected for an agent, is not easy. To model the

neural network, we also need to account for its architectural variability, such

as the activation function, the number of layers and neurons and properties

such as the use of winner-take-all (WTA) as a neural selection mechanisms

(Fukai and Tanaka, 1997) and the inclusion of recurrent connections (Marocco

and Nolfi, 2007). We explore these variabilities in Figure 5.20.

Neural	Network

#Hidden	 layers

1 32

Winner

Takes	All

(WTA)

Ativation

function

Linear
Sigmoid

Binary

Neurons

Feedback

Negative

weights

bias

ReLu

Maximum	

weight

Embodied	Agent’s	Controller

State	Machine

Decision	tree

Tanh

Mandatory

Optional

Alternative

Or

if..then

Figure 5.20: Feature model of a embodied agents’ controller.

With respect to controller’s variabilities, Marocco and Nolfi (2007), per-

formed two experiments with the same embodied agents, varying only the

neural network architectures and neural activation functions. In the first ex-

periment, they used a neural network without internal neurons, while in the

second experiment, they used a neural network with internal neurons and re-

current connections. In addition, they also used different functions to compute

the neurons’ outputs. Based only on the neural network characteristics, they

classified the robots from the first experiment as reactive robots (i.e. “motor

actions can only be determined on the basis of the current sensory state”),

and non-reactive robots (i.e. “motor actions are also influenced by previous

sensory and internal states”). Marocco and Nolfi (2007) analyzed whether the

type of neural architecture influenced the performance of a team of robots.

They showed that the differences in performance between reactive and non-

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 80

reactive robots vary according to the environmental conditions and how the

robots have been evaluated.

(Oliveira and Loula, 2014) investigated symbol representations in com-

munication based on the neural architecture topology that is used to control an

embodied agent. They found that the communication system varies according

to how the hidden layers connect the visual inputs to the auditory inputs.

(Jarraya et al., 2018) propose a multiagent approach for pervasive com-

puting that aims to identify human activities in smart homes. In their ap-

proach, the set of agents must observe sensor data and make local predictions.

Jarraya et al. (2018) state that “depending on the nature of sensor data, agents

may hold different types of classifiers.”

These findings have helped us to conclude that to support the design of

embodied agents, we need to account for the variability of the physical body

and the architecture that analyses the inputs. In addition, we also concluded

that the agent’s controller cannot be considered as a black box in the system,

since its structure must fit the characteristics that were selected to compose

the body and behavior of the agent.

The summary of variabilities captured by other approaches and by the

approach proposed in this thesis is shown in Table 5.7.

5.2.2
Description of the Architecture

Based on the two main variation points we have identified, we propose a

platform to design self-configurable embodied agents applications. Figure 5.21

depicts the high-level model of our proposed approach.

Figure 5.21: High-level model of the self-configurable agent approach to gen-
erate embodied agents.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 81

Table 5.7: Summary of embodied agents variability.

Body Variability Behavior Var. Controller Var.

Number of sensors

Number and
type of

communication
signals

Number of
layers

Type of sensors
(e.g. temperature,
humidity, motion,

lighting, gases)

Notification types
(e.g. alerts)

Number of
neurons
per layer

Calibration of
sensors

(e.g. temperature
detector

range, range of
presence detection,
reaction time, range
of colors detection)

Thresholds to
activate

notifications

Activation
Function (e.g.
linear, sigmoid)

Energy
Consumption

Classification (e.g.
air quality, disease)

Properties (e.g.
WTA, feedback)Sensors

Battery life
Prediction (e.g.

heart attack,
fruit crop yield)

Architecture
(e.g.full
connected,
output layer
connected to all
of the hidden
units)

Communication device
Range of communication
devices (e.g. short range,

long range)
Number and type of motors

Number and type of
actuators (e.g. alarm)

Basically, this platform contains five modules: i) a reconfigurable system

that contains the characteristics that can be used to compose the set of agents,

according to the application domain; ii) a manual control that allows a domain

expert to select the first set of features manually; iii) the creation of a set

of agents containing the selected characteristics that are also able to use a

neural network to learn about the environment; iv) a module for evaluating

feedback tasks, by investigating the performance of the group of agents in the

application scenario during the learning execution. The evaluation process has

to be implemented according to the application and the learning algorithm.

For example, if an application for automobile traffic control has the goal of

reducing urban traffic congestion, the evaluation may be performed based on

the number of vehicles that had finished their routes in a specific period; and

(v) a module to store and retrieve machine learning models based on the

context, as detailed in Section 5.2.2. It allows the set of agents to switch the

analysis architecture according to the context at runtime. The domain expert

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 82

can also use this context information to reconfigure the set of agents.

RQ3.2. How can we represent the effect of the relevant environment
changes on the reconfiguration of the embodied agents?

To represent the effect of the relevant environment changes on the

reconfiguration of the agents, the first step is to identify the attributes of

the environment that we need to consider in contextualizing the information

and to determine the contexts that this application will consider. For example,

if we have an application that contains a set of robots that interact with a

place, this place can be characterized by the temperature and the background

lighting information. Thus, the different contexts for this application will only

vary the temperature and background lighting information. If we have an

application that uses a glove for hand-gesture recognition, we may consider

the hand shape information as a contextual information in evaluating different

models. In an application for self-tracking, which monitors a person’s data

and performs disease prediction, a person can be distinguished based on the

country of residence. The information that we select to characterize one or

more entities in the application will be used as a parameter to detect changes,

to separate the input space, to train and to deploy the ML models.

Environment/
Dataset

N

(Best result for current context)

Good or better
result for current
context ?x iterations

Controller

Machine
Learning

Model

(after x interactions)

Context

Trained
ML Model

Temperature Background lighting

> -5 °C < -5 °C Morning Late Night

X X M1 = ANN with 5
hidden neurons and

binary activation
function

X X M2 = ANN with 2
hidden neurons and

sigmoid activation
function

Y

allocate
set model

Trained Machine Learning Model

adjust

Auto

detect
change

select

Figure 5.22: Schematic illustration of our architecture to store and retrieve
machine learning models based on context. Published in (Nascimento et al.,
2018).

This module to store and retrieve machine learning models based on

the context consists of two components, as depicted in Figure 5.22: (i) a

system that uses a machine learning model to analyze a dataset or interact

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 83

with an environment while a learning algorithm tries to maximize a given

scoring function; and (ii) a control module that configures machine learning

models, monitors the context changes, and maintains a history of the trained

ML-based models that provide the best result for each one of the operating

contexts. When the context changes, the quality of the results achieved by the

ML model that is in current use may decrease. As a consequence, if context

changes are known, the controller will revert to a previous configuration instead

of retraining itself. Otherwise, it will test new machine learning models. To

allow the system to find a new model, our architecture supports manual and

automatic controllers to manage permissible run-time adaptations caused by

environmental or system changes.

In short, to illustrate the use of our approach, consider a smart solar

battery in an aircraft that uses a trained artificial neural network (ANN) to

make decisions. In this illustrative example, by using a temporal context, we

can evaluate if the results can be improved if the model that we use in the

winter is different from the one in the summer. For example, suppose that

during the training step, we observed that during the summer, a neural network

with binary activation function outperformed a neural network with sigmoid

function, but during the winter, ANN with sigmoid was better. Then, based on

our proposed architecture, the solar battery will be deployed with two models:

one for the summer and another for the winter. It is an important approach

for this kind of application, where accuracy is the most important factor.

Modeling Embodied Agents

As we described in Section 5.1, FIoT does not support agents’ body

reconfiguration, but only their controller adjustment. To support body and

controller reconfiguration, as described in our proposed statechart models, we

adapted FIoT’s model to our new approach. Accordingly, Figure 5.23 depicts

the class diagram of an embodied agent. Each embodied agent contains a

controller that is a result of the composition of a subset of the body features

set and a subset of the controller features set.

To create a system that can change how the embodied agents sense the

environment at runtime, without actually changing the body of the agents, we

added the physical characteristics to the controller. For example, if we deploy

an agent with five sensors, we can test how this agent behaves while using

controllers with different physical configurations. Even when we deploy the

agent with a controller that considers all input sensors, we can change it at

runtime to another controller that uses only part of these sensors.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 84

Figure 5.23: Modeling variability-aware embodied agents.

An agent to execute Task Evaluation actions

Following the idea described in FIoT, we have a group of agents using the

neural controller to take decisions, while there is an agent, named Observer-

Agent, evaluating this group of agents and optimizing this neural controller

accordingly. Previously, this agent could change only the neural weights. Now,

we extended the ObserverAgent in order to allow it to change at runtime the

whole ANN’s structure. Therefore, during an experiment, a collection of em-

bodied agents can start the experiment using a neural network with three

sensors, two hidden layers and a hyperbolic tangent function as the transfer

function of all neurons; and finish this same experiment using a totally different

neural network, with one sensor, one hidden layer and a sigmoid function.

In our new approach, we called this agent LearningControlAgent, as

depicted in Figure 5.24. For instance, the engineer can provide two or more

different ANNS. For example, he/she can generate three neural networks

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 85

varying only the activation function and the topology. The engineer can explore

all possible configurations of the feature model, generating different options

of ANNS. The LearningControlAgent has the list of controllers that were

generated by the user.

Figure 5.24: Class diagram of a multiagent system composed of IoT embodied
agents.

5.2.3
Evaluation: Example of Application

To give more details about and illustrate the use of our proposed

approach, we selected one example from the IoT domain: a smart street light

application. In this application scenario, we consider a set of street lights

distributed in a neighborhood.

5.2.4
Application I: Reconfigurable Smart Street Lights

In the Section 5.1.6, we described a set of street lights, which are dis-

tributed in a simulated neighborhood, with neural networks in order to enable

them to make decisions based on the data collected from the environment.

They used a genetic algorithm to train the neural networks.

Each street light operates in an environment in which the background

light can be bright or dark. With respect to the environmental background

light, the application scenario has some variants: (i) night (background light

is equal to 0.0); (ii) late afternoon (background light is equal to 0.5); and (iii)

morning (background light is equal to 1.0). Each street light contains a lighting

sensor, but the local brightness also interferes with the sensor measurement.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 86

Problem

During a first simulation, while the background light was always bright,

the collection of street lights found a solution that provided a performance,

say X+1, during the morning. After the environment changed to the night, the

lights’ solution was adjusted to deal with this change. However, this new generic

solution presents a performance, say X, during the morning, and the street

light is unable to return to its previous configuration, as the street light does

not maintain different versions of its configuration. This configuration history

could enable the street light to maximize its performance during different parts

of the day.

In this scenario, is it better to create a street light with a general analysis

architecture that can deal with all variants of the background lighting; or

a street light that is able to switch its analysis architecture to specialized

solutions that were selected for each of the background lighting variants?

Experimental Setting: Implementing a context-aware-based decision

We simulated four scenarios, varying only the background light configu-

ration: (i) always bright; (ii) always dark; (iii) always late afternoon; and (iv)

one that dynamically changes the background light at runtime (i.e. some-times

the background light is bright and at other periods of time, such as at night,

the background light is dark).

As described in Section 5.1.6, we provided each street light with a neural

network to make decisions and we used a genetic algorithm to train the neural

network. However, different from the presentation in Section 5.1.6, where one

unique neural model dealt with all background light variants, we deployed the

simulated street lights with more than one model, which varied according to

the background light context. Further, we compared the set of street lights

that can use more than one model at runtime against the set of street lights

that uses only a single generic model. To generate these models, we trained

different neural networks in different contexts, as depicted in Figure 5.25.

First, we trained a neural network, which consists of five hidden units and

uses a binary activation function, putting the set of street lights to interact with

the first scenario (always bright). Then, we trained a sigmoid neural network

three times (using the scenarios (ii), (iii) and (iv), separately), generating three

trained models with particular weight values. In total, we saved four models,

such as that one that was generated while the set of street lights interacted

only with the first scenario.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 87

Training Models

Context Description
(background light)

and Models

Save models

Configure Model 1:
Neural network with

binary activation
function and 5 hidden

units

Put street lights in
scenario 1: always

bright

Configure Model 2 and
3: Neural network with

sigmoid activation
function and 5 hidden

units

Configure Model 4:
Neural network with
sigmoid activation

function and 10 hidden
units

Put street lights in
scenario 2: always

dark

Put street lights in
scenario 3: always

late afternoon

Put street lights in
scenario 4: dynamic

background light
 (bright, dark and late

afternoon)

Generate trained and
specialized model 1

Generate trained and
specialized model 2

Generate trained and
specialized model 3

Generate trained and
generic model 4

Figure 5.25: Training step: varying the background light context in a street
light scenario to generate generic and specialized ML models.

Experimental Results: Evaluating Street Lights Performance

As we described, we generated four models by training the neural

networks in scenarios with different background lighting contexts: three specific

models (one for each background lighting configuration) and one general

model (that was trained while the set of street lights interacted with dynamic

background lighting). Table 5.8 shows the performance results that were

achieved by the set of street lights while using these models in different

contexts. For more details concerning the performance calculations, see Section

5.1.6.

According to Table 5.8, the models achieved different results for each

part of the day. For instance, the generic model provided the best results for

the night and morning. However, the specific model outperformed the generic

model during the late afternoon. As the general model is dealing with a more

complex scenario, we increased the number of interactions from 20 to 100 to

verify if its results could be improved, but they could not.

Accordingly, if we train a unique model to deal with all background

lighting variants, as presented in Section 5.1.6, the average performance of

the set of street lights in this application scenario is ≈ 59.39%. If the set

of street lights is able to select the most appropriate model for each one of

the background light configurations, the average performance is ≈ 60.31%.

Probably, this difference would be increased if we considered more context

parameters.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 88

Table 5.8: Street lights’ performance results obtained while executing different
models with different contexts.

ML-based	
Model

#
Interactions

Background Lighting

0.0 0.5 1.0

Specific
Models

0.0 20 44.85% x x

0.5 20 x 65.49% x

1.0 20 x x 70%

Generalist	Model 20 45.42% 62.74% 70%

Therefore, our results show that the best solution for this application

scenario is to create a system that is able to use the generic model at night

and in the morning, and to switch to the specific model in the late afternoon,

as depicted in Figure 5.26.

Detect context

var b =
background

light

N

b == 0.5 (late
afternoon) ?

Motion	sensor

Light	sensor

Wireless	receptor

Wireless	transmitter

LED	(3	levels)

Turn	on	Wireless
Receiver

Previous	
decision	 (turn	on
wireless)

Input	layer Hidden	 layer Output	 layer

Y

Switch to the specific neural model to b = 0.5

Switch to the generic neural model

Motion	sensor

Light	sensor

Wireless	receptor

Wireless	transmitter

LED	(3	levels)

Turn	on	Wireless
Receiver

Previous	
decision	 (turn	on
wireless)

Interact with the
environment

Figure 5.26: Deployment step: selecting the trained model to use according to
the context.

However, the difference between the approaches’ average performance is

less than 1%. Thus, the software engineer must evaluate which approach fits

the application requirements better. For example, if the application is critical

and performance is the most important requirement, our proposed approach

should be considered. If the storage capacity of the application is limited or

the system cannot connect to ML web services, finding a general good model

may be the most appropriate approach.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 89

5.2.5
How the proposed approach adheres to the reference model

Table 5.9 shows how this proposed architecture adheres to the proposed

reference model by concretizing the high-level statechart components. The

component “agent configuration” is developed for this approach as a recon-

figurable system that contains the characteristics that can be used to compose

the set of agents.

Table 5.9: Case II: Main statechart components.

Statechart Components Approach

Agent Configuration
Body

A feature model to represent embodied
agents’ body variability.

Controller
A feature model to represent embodied
agents’ neural network variability.

Agent Behavior

The creation of a
set of agents containing
the selected characteristics that are also
able to use a neural network to
learn about the environment.

Agent senses and acts based on
the selected body features. It decides
based on the trained neural network’s
configuration.

Environment

The user needs to previously identify the
attributes of the scenario or dataset that
are needed to consider in contextualizing
the information.

Task Evaluation

A module for evaluating feedback tasks,
by investigating the performance of
the group of agents in the application
scenario. In addition,
a module to store and retrieve
neural networks based on the context.

5.3
An Approach to Test Embodied Agents

According to (Bredeche et al., 2018), there is a gap in the literature re-

garding the testing of embodied agents. A further complication is that current

embodied agents-based approaches may involve different characteristics, such

as different physical configurations, asynchronous, and a learning-based behav-

ior, as we described in Section 4. In addition, the environment in which these

agents are situated also may have many variants.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 90

Therefore, in order to answer the following question “RQ4. How to

design and implement an approach to test embodied agents and

their variability?”, this section describes an approach that we propose to

test embodied agents and their variability.

In (Nascimento et al., 2017), we presented a preliminary version of a

publish-subscribe-based architecture that was implemented2 to make feasible

the development of multi-level tests based on logging for multiagent systems.

By using this platform, it is possible to test the behavior of individual agents

and the behavior of a group of agents. However, we only showed the usability

of our platform by testing a very simple MAS application - a marketplace to

buy and sell books on-line. Then, we improved this architecture and presented

a new approach in (Nascimento et al., 2019) that makes it possible to diagnose

failures in a more complex MAS application, one that involves embodied

agents.

To illustrate and evaluate the use of the proposed approach, we used

the application presented in Section 5.1.6, which we developed by using the

“Framework for the Internet of Things” (FIoT) (Nascimento and Lucena, 2017)

(see Section 5.1);

5.3.1
Description of the Testing Approach

To test applications based on embodied agents, our approach promotes

the development of tests separated into six perspectives: (i) a designing per-

spective (i.e. a test application to evaluate the sensors, actuators and analysis

architecture that were selected to compose the agent); (ii) a learning perspec-

tive (i.e. a test application to inspect the interactions generated because of the

learning algorithm that optimizes agent’s controller); (iii) a scenario perspec-

tive (i.e. a test application to consume the logs generated by the application

scenario); (iv) a task evaluation perspective (i.e. a test application to evaluate

whether the application goal was achieved); (v) a behavior perspective (i.e.

considering the tasks that an individual embodied agent must be able to ex-

ecute according to its body and controller); and (vi) a framework perspective

(i.e. evaluating the agent interactions generated because of the framework that

we used to create the application).

We need to customize these tests according to the application. In general,

at the task evaluation level, we should verify if the system is able to solve the

problem for which it is conceived. For example, our streetlight application has

2The source of the test system is available at
http://www.inf.puc-rio.br/ nnascimento/MAS-tests.html

http://www.inf.puc-rio.br/~nnascimento/MAS-tests.html
DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 91

the goal of achieving an specific energy consumption target and maintaining

the maximum visual comfort in illuminated areas in order to enable people

to finish their routes. If the group of embodied agents does not solve this

problem, we should investigate the other perspective tasks to understand why

the process failed.

Design and Implementation: An Architecture based on Metadata and the
Publish-Subscribe Paradigm

We developed a publish-subscribe-based architecture as a foundation for

developing different kinds of test applications for MASs at different perspec-

tives. Our goal is to provide mechanisms to capture and process logs gen-

erated by agents automatically. As depicted in Figure 5.27, their architecture

consists of three layers: MAS Application (L1), Publish-Subscribe Communica-

tion (L2), and Test Applications (L3). The Publish-Subscribe Communication

layer uses the RabbitMQ platform (see subsection 5.3.1) for delivering logs

from agents (publishers) to be consumed by test applications (subscribers).

TEST
APPLICATIONS

(SUBSCRIBER	LAYER)

PUBLISH –
SUBSCRIBE

COMMUNICATION

MAS	
APPLICATION

(PUBLISHER	LAYER)
Agent1 Agent2 Agent3

Environment

SERVER

Queues

Subscriber	App	01–
Learning	Algorithm

Testing

Subscriber	App	02–
Agent	Design	

Testing

Subscriber	App	03–
Global	
Testing

Log	Structure:
agentType.
agentName.
action.
typeLog.
className.
methodName.
codeLine.
resource.
timestamp.
message.

Figure 5.27: A Publish-Subscribe-based architecture to test MASs.

Each agent publishes logs with annotations that are composed of the

following tags:

– agentType: the type of the agent (e.g OBSERVER, STREETLIGHT). In

JADE, it refers to the name of the container where this agent lives;

– agentName: the name provided for the agent by the system develop-

er/user (e.g streetlight01, streetlight02, observer01);

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 92

– action: the event that caused the log generation (e.g readMotionSensor,

selectBestIndividuals, switchStreetLight);

– typeLog : types of logs (e.g error, info, warning);

– className, methodName, codeLine: necessary information to identify

which parts of the code generated the event;

– resource: the main resource that has been manipulated or requested by an

agent during an event execution (e.g neuralController, streetlight01Info,

memory). It may be used to investigate all events that are related to a

specific resource;

– timestamp: time that the log was created. It is used to sort all events

into a single timeline (Araújo and Staa, 2014);

– message: a description of the event.

Thus, a log message must meet the pattern “(agent-

Type).(agentName).(action).(typeLog).(className).(methodName).

(codeLine).(resource).(timestamp).(message).” Each application will

have a set of values that each tag may assume, except the message tag is an

open field.

All agents in the MAS application layer are also a TestableAgent type.

As shown in Figure 5.28, a Testable agent extends the JADE agent. Thus,

it complies with FIPA specifications. A Testable agent uses the RabbitMQ

properties to send logs with annotations as messages.

These logs can be published from any part of the agent’s code. Via

the TestableAgent class and JADE properties, some tags have their values

attributed autonomously, such as agentType, agentName and timestamp.

Figure 5.28: Testable Agent class.

The RabbitMQ autonomously delivers log messages to queues according

to their tags’ values. As shown in Figure 5.27, each test application defines a

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 93

binding key in order to subscribe itself to consume messages from a specific

queue. For example, a test application that monitors only error logs from the

Observer agent must have the binding key “Observer.*.*.error.#.” Therefore,

this application will consume any log with the tuples (agentType,Observer)

and (typeLog,error). It is also possible to create applications that use multiple

bindings. For example, if a performance test application needs to calculate the

number of Adaptive agents that are connected to the system, this application

will have to consume logs with different action values. Thus, it needs to con-

sume logs with the tuples (action,connectToSystem) and (action,beDestroyed).

Test applications do not interfere on the execution of each other. Each

test class extends the class RabbitMQConsumer that starts an independent

process to consume messages from a specific queue. By using queues, the pub-

lisher generates a set of information elements without the need of knowing

which applications will consume them. In addition, more than one application

can consume the same data, but giving them different treatments. To under-

stand more about the characteristics of RabbitMQ that we used in our ap-

proach, see https://www.rabbitmq.com/tutorials/tutorial-five-java.

html (Accessed in 03/2019).

RabbitMQ: Publish-Subscribe Platform

RabbitMQ (RabbitMQ, 2016) is a message-oriented middleware, which

generates asynchronous, decoupling applications by separating sending and

receiving data through a client and scalable server architecture. It can be

easily integrated into an application to operate as a common platform to

send and receive messages, maintaining messages in a safe place to live until

received. RabbitMQ is a multi-platform that may be deployed in Java, C,

Python, and many other programming languages. It can also be deployed in a

cloud infrastructure.

By using RabbitMQ, it is possible to build a logging system based on the

publish-subscribe architecture. The publisher is able to distribute log messages

to many receivers, while the consumers have the possibility of selectively

receiving the logs. Publisher and consumers communicate through queues.

Each queue has a particular routing key that is a list of words, delimited

by dots. There can be as many words in the routing key as you like, up to the

limit of 255 bytes. These words can be anything, but usually they specify some

features connected to the message. For example, if a developer specifies that

a log message must meet the pattern “(month).(day).(deviceId).(typeLog)”,

the valid routing keys would be “november.11.device01.error” and “november.

15.device01.info” (RabbitMQ, 2016).

https://www.rabbitmq.com/tutorials/tutorial-five-java.html
https://www.rabbitmq.com/tutorials/tutorial-five-java.html
DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 94

Therefore, a message sent with a particular routing key will be delivered

to all the queues that are bound with a matching binding key. However, there

are two important special cases for binding keys (RabbitMQ, 2016):

* (star) can substitute for exactly one word; and

(hash) can substitute for zero or more words.

Adapting FIoT Agents to be Testable Agents

Figure 5.29: Making FIoT’s agents as Testable Agents.

Figure 5.30: Setting log values for each Testable FIoT agent.

Our first step was to allow FIoT agents to publish logs during the appli-

cation execution, extending the TestableAgent class, as shown in Figure 5.29.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 95

Then, we set the log values that can be published by each agent type. For exam-

ple, the AdaptiveAgent can use the word ‘receiveIputDataFromSmartThing’

to replace the tag action in the annotated log, while the ObserverAgent can

use ‘startGeneticAlgorithm’.

5.3.2
Evaluation: Example of Application

To give more details about and illustrate the use of our proposed

approach, we selected the example of the smart street light application to

develop a set of tests.

5.3.3
Application I: Testing Smart Street Lights

In short, this experiment involves developing reconfigurable streetlights.

The overall goal of this application is to reduce the energy consumption while

maintaining appropriate visibility in illuminated areas (see Section 5.1.6). For

this purpose, each streetlight was provided with ambient brightness and motion

sensors, and an actuator to control light intensity. In addition, they are able

to interact with each other though a wireless communicator.

AdaptiveAgent 1

AdaptiveAgent 3

AdaptiveAgent 4

ObserverAgent

AdaptiveAgent 2

Motion	sensor

Light	sensor

Wireless	receptor

Wireless	transmitter

LED	(3	levels)

Turn	on	Wireless
Receiver

Previous	
decision	 (turn	on
wireless)

Input	layer Hidden	 layer Output	 layer

Neural Network

USES
CHANGES

EVALUATES

Figure 5.31: Overview of the general application architecture.

Each street light is controlled by an AdaptiveAgent, as shown in Figure

5.31. We used a neuroevolutionary algorithm to support the design of the

street behaviors of the street lights automatically. Each streetlight uses a neural

network to determine the communicating signals, and whether it turns on its

lights. An ObserverAgent evaluates the overall application performance and

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 96

uses a genetic algorithm to optimize the AdaptiveAgents’ neural network (i.e.

adjusting agents’ controller, as we describe in the statechart 4.5). As detailed

in Section 5.1.6, this evaluation is based on energy consumption, the number

of people that finished their routes before the simulation ends, and the total

time spent by people moving during their trip:

fitness = (1.0× pPeople)− (0.6× pTrip)−

(0.4× pEnergy)
(5-10)

Send message to
ManagerAgent

with control
configuration

Await msg from
ManagerAgent
with Adaptive

Agent's address

Did
ManagerAgent

answer the
message?

Read light sensor

Read motion
sensor

Receive
communication
data from the
closest street

light

No

Yes

Send message to
AdaptiveAgent
with input data

Await msg from
AdaptiveAgent

Did
AdaptiveAgent

answer the
message?

Convert neural
network outputs'

values into
actuator values

No

Yes

Switch the light's
OFF/DIM/ON

Send message to
neighboring
street lights
(0.0/0.5/1.0)

Is the simulation
time finished?

No

END

Yes

Figure 5.32: Activity diagram of the streetlights.

ObserverAgent

C
on

fig
ur

at
io

n

Read the control
configuration of

street lights
(number and type

of inputs and
outputs)

Generate a neural
network based on the

streetlight
characteristics (layer,

connections)

Deploy the best
neural network

configuration into the
devices

End

G
en

et
ic

 A
lg

or
ith

m

Start the
Genetic

Algorithm

Generate a new
generation with a
set of individuals

(weight
connections)

Set the neural
network with

individual
configuration

(weights)

Calculate the
individual's fitness

(people, trip time and
energy)

The current
generation
has another
individual?

Select the 20
best

individuals of
the current
generation

Do I need to
create

another
generation?

Reproduce and
mutate the
selected

individuals

Select the best
individual

(highest fitness)

YES

Sc
en

ar
io

 E
va

lu
at

io
n

Let the set of
streetlights "live" by

using the current
neural network

Is the
simulation

time finished?

Calculate the
percentage of the
number of people

that completed their
routes

Calculate the
percentage of energy
that was consumed

by streetlights

Calculate the
percentage of the

total trip time

NO

YES

NO

Figure 5.33: Activity diagram of the ObserverAgent.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 97

In order to identify the functional tests, we first created activity diagrams

for the street light agents and for the ObserverAgent, as depicted in Figures

5.32 and 5.33.

Experimental Setting

In our illustrative example, we can investigate the failures generated by

the tasks associated with the framework (i.e. the ManagerAgent cannot identify

new streetlights at the scenario), to the agent design (i.e. streetlight agents

must detect people, but they do not have motion sensors), tasks related to the

application scenario (i.e. streetlights should communicate, but the distance

between them is higher than the wireless range), or the tasks related to the

learning algorithm execution (i.e. the ObserverAgent is executing the genetic

algorithm wrongly, selecting the worst solutions to compose a new generation

instead of the best solutions).

The task evaluation perspective takes the global tasks into account, such

as verifying whether the agents behavior guarantees that people finish their

routes before the simulation ends and whether the system achieves a pre-

specified energy consumption target. The behavior perspective considers the

tasks that an individual embodied agent in the collection of streetlight agents

must execute, such as collecting data, switching the light and communicating

with the other agents.

By using our proposed architecture, we created some test applications

to execute functional tests at some levels. In this experiment, we have one

test application consuming logs related to the task evaluation perspective,

monitoring the ObserverAgent and its learning algorithm execution, and

two test apps related to the designing, scenario and behavior perspectives,

monitoring the streetlight agents and their interaction with the environment.

Thus, this section presents part of the test plan that we created and performed

for testing this application.

Test Cases

We executed various test cases, taking six parameters into account:

(i) perspective (e.g. related to agent design, the agent behavior, learning

or scenario requirements); (ii) function (e.g. composed of a set of actions;

for example, the function evaluateSolution may be composed of the actions

calculateEnergy and calculateNumberPeople); (iii) procedure (e.g. a general

description of the test); (iv) input (e.g. a resource, a component); (v) expected

value (e.g. the result that will be produced when executing the test if the

program satisfies its intended behavior); and (vi) validation method (e.g.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 98

the strategies that a tester performs to evaluate the system, comparing the

program execution against expected results).

Experimental Results: Testing Street Lights

Each test case execution produced several logs with meta-information

annotations, which were consumed by test applications. Then, we used these

logs as a validation method, as shown in Table 5.10. To validate a test

case, the test application must verify whether the logs are appearing in

the order described in the Validation Method column. Therefore, after the

developer informs the logs from the validation column, the test application will

automatically create a state machine, where each state represents an action.

For example, Figures 5.34 and 5.35 illustrate the state machine that were

created to validate the execution of the global test “evaluate solution” and

the local test “switch the light ON”, respectively. As shown, the verification

program defines the transition between states as a log. A transition will

only occur when the expected log appears. Each state has a maximum

wait time for the expected log(s). Thus, if the maximum wait time exceeds

a threshold, an error linked to the current state will be generated. This

situation indicates that an agent performed an unexpected behavior and the

action was not successful executed. For example, if the multiagent system

does not self-organize to a satisfactory solution, it will not produce the log

“OBSERVER.observer.achieveEnergyTarget.#”. Thus, an error linked to the

state “calculateEnergy” will be generated, as depicted in Figure 5.34.

setNeuralNetwork

readSimulationResults

calculateEnergy

OBSERVER.observer.
startExecutionWithControllerConfiguration.
info.#

ERROR

END

NO

Time expired?

YES

calculatePeople

calculateTripDuration

OBSERVER.observer.
calculateEnergy.
info.#

OBSERVER.observer.
readSimulationResults.
info.#

Time expired?
YES

OBSERVER.observer.
achieveEnergyTarget.
info.#

Time expired?

YES
OBSERVER.observer.
achievePeopleTarget.
info.#

OBSERVER.observer.
calculateFitness.
info.#

TESTE OK

Figure 5.34: Simplified state machine for verifying test cases generated for the
function “evaluate selected solution”.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 99

Table 5.10: Functional tests at different perspectives (Simplified Table)

Perspective Func. Procedure Input
Expected

value

Validation Method
(logs sorted into a

timeline)

Designing
and

Framework

create
Adaptive

Agent
to the

streetlight

Manager
Agent

creates a new
Adaptive

Agent
to the

streetlight

Neural
Network

configuration
(number of

inputs
and outputs)

Adaptive
Agent

with the
selected
neural

network

1)MANAGER.
receiveMsgFromSmartThing.

..*.*.smartThing.#
2)MANAGER.

createAdaptiveAgent.INFO.#
3)AdaptiveAgent.lightsAgent.

connect.#
4)MANAGER.

sendMsgToSmartThing.INFO.#
5)AdaptiveAgent.lightsAgent.

receiveInputData
FromSmartThing.#

Behavior
collect
data

streetlight 10
(node10)

reads
its sensors

data

streetlight’s
motion and

light sensors,
and

communication
input

Adaptive
Agent

receives
data

from the
streetlight’s

sensors

1)lightContainer.node10.
receiveWirelessData.#

2)lightContainer.node10.
readLightSensor.#

3)lightContainer.node10.
readMotionSensor.#

4)lightContainer.node10.
sendMsg.*.*.

msgAdaptiveAgent
5)AdaptiveAgent.lightsAgent.

receiveInputData
FromSmartThing.#

Behavior
process
output

AdaptiveAgent
uses a

neural network
to process

sensors
data and

generate output

streetlight’s
sensors data

Adaptive
agent

calculates
two outputs

(led and
wireless
data)

1)AdaptiveAgent.lightsAgent.
useControllerToGetOutput.#
2)AdaptiveAgent.lightsAgent.
sendOutputToSmartThing.#

Behavior
and
Environment

switch
the
light
ON

Streetlight
Agent
(node 10)
switches the
light ON

neural
network’s
light output
value
is positive

node10’s
light sensor
detects a
value
equal or
higher than
its light
brightness

1)lightContainer.node10.
receiveNeural
NetworkCommand.#
2)lightContainer.node10.
switchLightON.#
3)lightContainer.node10.
detectLight.#
4)lightContainer.lights.
finishSimulation.#

Learning
change the

neural
network

ObserverAgent
uses an

individual’s
genes

to set the ANN
weights

(see
subsection

)

an individual
from

the current
generation

the ANN
weights

sequence is
equal to the

current
individual

1)OBSERVER.
chooseAdaptationMethod.#

2)OBSERVER.
selectNeuralConfiguration.#

3)OBSERVER.
useIndividualGenesToANN.#

4)OBSERVER.
startExecutionWithController

Configuration.#

Task
Evaluation

evaluate
the

selected
solution

Observer
Agent

analyzes
the energy

consumption
and whether

everyone
finished their
routes during
the selected

solution

the best
individual
of the last
generation

energy
consumption
is less than

70%
and

everybody
finished

their
routes

1)OBSERVER.
startExecutionWith

ControllerConfiguration.#
2)OBSERVER.

readSimulationResults.#
3)OBSERVER.

calculateEnergy.#
4)OBSERVER.

achieveEnergyTarget.#
5)OBSERVER.

achievePeopleTarget.#
6)OBSERVER.

calculateFitness.#

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 100

processNeuralNetwork

switchLightON

switchLightOFF

detectLight

LIGHT.light1.
receiveNeuralNetworkCommand.
info.#

LIGHT.light1.detectLight.info.#

LIGHT.light1.
switchLightOFF.info.#

LIGHT.light1.switchLightON.info.#

ERROR

LIGHT.light1.
finishSimulation.
info.#

LIGHT.light1.
receiveNeuralNetworkCommand.
info.#

END

NO

Time expired?

YES

TESTE OK

Figure 5.35: Simplified state machine for verifying test cases generated for the
functions “switch the light ON” and “switch the light OFF”.

In order to force test failure and verify if these test applications were

able to identify faults, we forced certain classes to act incorrectly during

the execution of the program over some local tests. For example, to test

the function “switch the light ON”, we inserted a defect that makes some

streetlights to go dark during the simulation. Therefore, a streetlight agent

that switched its light ON on the previous execution, did not detect brightness

on the current execution and failed. As the test application did not receive the

log “LIGHT.light1.detectLight.info.#”, its state machine indicated a failure

in the state “switchLightON,” as depicted in Figure 5.36. Considering that a

person can only move if his/her current and next positions are not completely

dark, it interferes on the overall solution evaluation. Consequently, if a person

does not finish his or her route, the test at the Task Evaluation perspective

will also fail. Figure 5.37 depicts the logs that were generated by agents while

this situation was being executed. Figure 5.38 depicts the global test that was

executed without this defect.

Figure 5.36: Executing the state machine to test the function “switch the light
ON”: failure generated between states “switchLightON” and “detectLight” -
specific log was not consumed.

Using our proposed solution, a test application can automatically select

those logs from different agents that are essential for a specific test case and

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 101

Figure 5.37: Executing the state machine to test the evaluation solution: failure
generated between states “calculatePeople” and “calculateTripDuration” -
because the machine did not receive the log that indicates that everyone
finished their routes during the selected solution.

Figure 5.38: Executing the state machine to test the evaluation solution.

present them sorted in a single timeline. As a result, the interface depicted

in Figure 5.39 shows just the logs that were consumed by the evaluation

test application according to this binding key list. In addition, all logs are

organized in a single timeline. As shown, not all logs depicted in Figure 5.40

were presented in this interface, but only the logs relevant to the execution of

this test case. Thus, we were able to verify these logs in order to find the fault

that generated the failure indicated by the state machine.

Figure 5.39: Subscribing to receive only logs related to the evaluation solution
testing.

Figure 5.40: Subscribing to receive logs from all agents.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 102

As shown in Table 5.10, we executed some functional tests at different

perspectives. By using state machines, the test applications were able to

validate these test cases by comparing the logs consumed from the MAS

publisher against the logs listed in the “Validation Method” column. In

addition, we also conducted some tests by inserting software failures and

verifying if our test software could be useful for detecting these faults. As

a result, after the state machine had indicated a failure, the developer could

use the interface to identify the fault and reduce the diagnosis time.

5.3.4
How the proposed testing approach makes it possible to test an approach
that adheres to the reference model

Table 5.11: Case III: Main statechart components.

Statechart Components Approach

Agent Configuration
Body

Developing tests to the designing
perspective,evaluating the sensors and
actuators were selected to compose the
agent.

Controller

Developing tests to the designing
perspective, evaluating the
neural network
that was selected to compose the agent.

Agent Behavior

Developing tests to the scenario and
behavior perspectives, evaluating if
agents are sensing and acting
based on their body and controller
characteristics, and in accordance
with the environment changes.

Environment

Developing tests to the scenario
perspective
and framework perspectives, verifying
communication among agents, and
perturbatory channels that exist
between agents and the environment.

Task Evaluation

Developing tests at the global level,
investigating the performance of
the group of agents in the application
scenario. Basically, this test consumes
logs from the ObserverAgent, which
implements the Task Evaluation
component and the learning algorithm.

Table 5.11 shows how this proposed testing approach makes it possible to

test approaches that adhere to the proposed reference model. According to our

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 5. Approaches and their Applications 103

proposal, testing embodied agents requires to test each one of the statechart

components. For example, to test the component “agent configuration”, we can

develop tests to the designing perspective, evaluating the sensors and actuators

that were selected to compose the agent.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

6
Conclusion

Embodied agents have recently been proposed in several domains, such as

health care, smart cities and agriculture. However, deploying these applications

in specific scenarios has been very challenging because of the complex static

and dynamic variability of the physical devices (e.g. sensors and actuators),

the software scenario behavior and the environment.

According to existing experiments and our experience with embodied

agents, we identified three main variation points to handle in order to create an

embodied agent, including the variants that can be involved in a neural network

design: (i) the body variability (i.e. number, types and brands of sensors and

actuators); (ii) the complexity of the behavior of the agent, which varies based

on the physical components that are operated by the agent (e.g. if this agent is

able to communicate, the number of signals agents are able to exchange); and

(iii) the agent controller that allows the agent to sense the environment and

behave accordingly (e.g. if this agent controller is a neural network, in terms

of its architectural variability the type of activation function and the number

of neurons should be considered). In addition, the environment brings about

variations in each one of these variation points, requiring the development of

embodied agents that can reconfigure according to an evaluation criteria, such

as performance and safety.

As formal methods, such as Statecharts, can endow agent-based systems

with more intuitive and clear specifications, as well as specifications that

are amenable to formal verification and analysis, favoring the development

process of the whole system, we decided to investigate existing approaches for

providing a reference model for self-configurable IoT embodied agents. Many

modeling approaches to understand the relationship between the properties of

agents and environments were proposed, as approaches to model reconfigurable

systems. However, the use of reconfigurable systems is a challenge when

specifying the behaviour of embodied agents. Therefore, we identified the main

characteristics for both agent-based and reconfigurable systems, and used them

as a basis to propose a reference model for reconfigurable embodied agents

based on statecharts. Our focus was not on providing a highly elaborated

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 6. Conclusion 105

description, covering all possibly occurring concepts, but one that fits best a

broad variety of embodied agent models in different domains, as required by

the varied applications of Internet of Things (IoT). Although our reference

model proposal is on high level of abstraction, we argue that it contributes

particularly to a clear conceptualization of reconfigurable embodied agents,

clarifying the relationship between the body and the control of an embodied

agent and the complex and dynamic interactions between agents and their

environments.

We have introduced this reference model so that it could serve to guide

the development of software approaches that support the designing and testing

of embodied agents. Based on the proposed reference model, we were able to

develop three software approaches to embodied agents:(i) a software framework

for the development of IoT embodied agents; (ii) an approach to configure

embodied agents according to the environment; and (iii) an approach for

testing reconfigurable embodied agents.

To validate each one of the software approaches, we developed some

embodied agents applications to different scenarios. We have described some

of these applications in this thesis work, since we provided other applications

in (Nascimento et al., 2015; Nascimento Marx Leles Viana, 2016; Nascimento

and Lucena, 2017; Nascimento and Lucena, 2017).

We used the application scenario of Smart Street Lights to illustrate

different aspects of this thesis work. First, we introduced this case study for

showing an application of the proposed reference model. Second, to illustrate

the use of the software framework, we instantiated this application. Third, to

illustrate the use of the approach to configure embodied agents according to the

environment, we reproduced this street light application scenario, but showing

how this application operates in a dynamic environment. Finally, we showed

how our proposed testing approach can be used for testing agents embodied

in smart street lights scenarios.

We believe that our approach can further assist a software engineer in

achieving a broader understanding of embodied agents configurations and their

effect under different environments.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

7
Future Work and Open Challenges

Many possible future directions stem from this work. A first interesting

direction is to extend the current description to address other aspects of MAS

development, such as agents’ communication and other kinds of interactions

between agents. In addition, as we provided a reference model that is on high

level of abstraction, it can also be extended in order to fit best a specific

application domain, such as smart cities.

In addition, the applicability of the conceptual model presented in this

paper is not strictly limited to our implementation approaches and could

be reused in further research, as a foundation for the development of new

approaches for embodied agents.

In the following sections, we describe other interesting directions for the

development of reconfigurable embodied agents.

7.1
Morphology-based agent design

(Auerbach and Bongard, 2009) discuss the need of approaches to design

embodied agents solutions that are able to evolve morphologically, that is,

adapting the evolutionary algorithm to also include the possible agent body

configurations. In addition, (Auerbach and Bongard, 2009) also argue that

there is no standard about how the controller should be organized and about

whether it is necessary to use a structural modularity in controller design.

7.1.1
Other learning algorithms

We designed our approaches taking into consideration the main adaptive

approaches for the controller of embodied agents, that are the evolutionary

and back-propagation algorithms. We can conduct more experiments using

other learning algorithms in order to construct a sufficient and representative

model. Note that our model is generic and we may consider other alternative

prediction modules and learning algorithms.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 7. Future Work and Open Challenges 107

7.2
Descriptive Evaluations

(Auerbach and Bongard, 2012) performed an experiment to investigate

interactions between body and environment, but they state that this rela-

tionship is not well understood. According to the authors, there is a need of

investigating how the body of evolving robots varies in other environments,

and investigating which environments drive an increase in body complexity

and which ones increase the complexity of the control strategy. They also sug-

gest to investigate if it is possible to measure the complexity of robots while

they are evolving in order to affect the evolutionary search process.

Therefore, this is clearly a future work that we will address. To mea-

sure the complexity of embodied agents while they are being adapted, we will

maintain a profile of environmental changes and body and controller recon-

figurations. Therefore, we can investigate which types of reconfiguration are

usually triggered by specific environment changes. The metadata-driven and

publish-subscribe-based approach that we implemented to test and evaluate

embodied agents will assist us with these descriptive evaluations.

7.3
Embodied agent testing and verification

According to (Bredeche et al., 2018), there is a gap of methods and tools

for analyzing the evolutionary dynamics at work, which is a technique usually

used to evolve embodied agents. As proposed in the previous section, we can

also use our publish-subscribe-based approach for analyzing the evolutionary

dynamics at work, bearing on how the robots behave and change their behavior

when deployed.

In addition, based on our proposed statecharts, we also aim at delivering

a solution for the formal verification of embodied agents.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

8
Bibliography

AGRE, P. E. Computational research on interaction and agency. Artificial intel-

ligence, Elsevier, v. 72, n. 1-2, p. 1–52, 1995.

ARAÚJO, T. P. de; STAA, A. von. Supporting failure diagnosis with logs containing

meta-information annotations. Technical Reports in Computer Science. PUC-

Rio. ISSN 0103-9741, PUC-Rio, v. 14, p. 21, 2014.

ARDUINO. Arduino. Http://www.arduino.cc/.

ATZORI, L. et al. The social internet of things (siot)–when social networks

meet the internet of things: Concept, architecture and network characterization.

Computer networks, Elsevier, v. 56, n. 16, p. 3594–3608, 2012.

AUERBACH, J.; BONGARD, J. C. Evolution of functional specialization in a

morphologically homogeneous robot. In: Proceedings of the 11th Annual

Conference on Genetic and Evolutionary Computation. New York, NY, USA:

ACM, 2009. (GECCO ’09), p. 89–96. ISBN 978-1-60558-325-9. Dispońıvel em:

<http://doi.acm.org/10.1145/1569901.1569915>.

AUERBACH, J. E.; BONGARD, J. C. On the relationship between environmental

and morphological complexity in evolved robots. In: Proceedings of the 14th

Annual Conference on Genetic and Evolutionary Computation. New York,

NY, USA: ACM, 2012. (GECCO ’12), p. 521–528. ISBN 978-1-4503-1177-9.

Dispońıvel em: <http://doi.acm.org/10.1145/2330163.2330238>.

AYALA, I. et al. A software product line process to develop agents for the iot.

Sensors, Multidisciplinary Digital Publishing Institute, v. 15, n. 7, p. 15640–15660,

2015.

BAE, J. W.; MOON, I.-C. Ldef formalism for agent-based model development.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, IEEE,

v. 46, n. 6, p. 793–808, 2015.

BANARSE, D. et al. The body is not a given: Joint agent policy learning and mor-

phology evolution. In: INTERNATIONAL FOUNDATION FOR AUTONOMOUS

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 8. Bibliography 109

AGENTS AND MULTIAGENT SYSTEMS. Proceedings of the 18th Interna-

tional Conference on Autonomous Agents and MultiAgent Systems. [S.l.],

2019. p. 1134–1142.

BARESI, L.; GUINEA, S.; SHAHZADA, A. Short paper: Harmonizing heteroge-

neous components in sesame. In: IEEE. Internet of Things (WF-IoT), 2014

IEEE World Forum on. [S.l.], 2014. p. 197–198.

BEER, R. D. The dynamics of brain–body–environment systems: A status report.

In: Handbook of Cognitive Science. [S.l.]: Elsevier, 2008. p. 99–120.

BELEW, R. K.; MCINERNEY, J.; SCHRAUDOLPH, N. N. Evolving networks:

Using the genetic algorithm with connectionist learning. In: CITESEER. In. [S.l.],

1990.

BELLIFEMINE, F. et al. Jade Administrator’s Guide.

jade.tilab.com/doc/administratorsguide.pdf, 2007.

BELLIFEMINE, F. et al. Jade Programmer’s Guide.

jade.tilab.com/doc/programmersguide.pdf, April 2010.

BOE, A.; SALUNKHE, D. Ripening tomatoes: Ethylene, oxygen, and light treat-

ments. Economic Botany, Springer, v. 21, n. 4, p. 312–319, 1967.

BREDECHE, N.; HAASDIJK, E.; PRIETO, A. Embodied evolution in collective

robotics: a review. Frontiers in Robotics and AI, Frontiers, v. 5, p. 12, 2018.

BRIOT, J.-P.; NASCIMENTO, N. M. de; LUCENA, C. J. P. de. A multi-agent

architecture for quantified fruits: Design and experience. In: SEKE/KNOWLEDGE

SYSTEMS INSTITUTE, PA, USA. 28th International Conference on Software

Engineering & Knowledge Engineering (SEKE’2016). [S.l.], 2016. p. 369–

374.

BROOKS, R. A. Intelligence without reason. The artificial life route to arti-

ficial intelligence: Building , situated agents, Lawrence Erlbaum Associates

Hillsdale, New Jersey, p. 25–81, 1995.

BRUNI, R. et al. A white box perspective on behavioural adaptation. In: Software,

Services, and Systems. [S.l.]: Springer, 2015. p. 552–581.

CLARKE, E. M.; WING, J. M. Formal methods: State of the art and future

directions. ACM Computing Surveys (CSUR), ACM, v. 28, n. 4, p. 626–643,

1996.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 8. Bibliography 110

D’INVERNO, M.; LUCK, M.; LUCK, M. M. Understanding agent systems.

[S.l.]: Springer Science & Business Media, 2004.

FIPA. The Foundation for Intelligent Physical Agents. 08 2015.

Http://www.fipa.org/.

FLOREANO, D.; MATTIUSSI, C. Bio-Inspired Artificial Intelligence. Theo-

ries, Methods, and Technologies. [S.l.]: Cambridge: MIT Press, 2008.

FRANKLIN, S. Autonomous agents as embodied ai. Cybernetics & Systems,

Taylor & Francis, v. 28, n. 6, p. 499–520, 1997.

FUKAI, T.; TANAKA, S. A simple neural network exhibiting selective activation

of neuronal ensembles: from winner-take-all to winners-share-all. Neural compu-

tation, MIT Press, v. 9, n. 1, p. 77–97, 1997.

GALSTER, M. et al. Variability in software systems—a systematic literature review.

IEEE Transactions on Software Engineering, IEEE, v. 40, n. 3, p. 282–306,

2014.

GOOGLE. Google trends. https://trends.google.com/, January 2018.

HAREL, D. Statecharts: A visual formalism for complex systems. Science of

computer programming, Elsevier, v. 8, n. 3, p. 231–274, 1987.

HAREL, D. et al. Labor division with movable walls: Composing executable

specifications with machine learning and search. 2019.

HAYKIN, S. Neural Networks: A Comprehensive Foundation. [S.l.]: Macmil-

lan, 1994. ISBN 9780023527616.

HERRERO-PEREZ, D.; MARTINEZ-BARBERA, H. Decentralized coordination of

automated guided vehicles (short paper). In: AAMAS 2008. [S.l.: s.n.], 2008.

HORN, P. Autonomic computing: Ibm\’s perspective on the state of information

technology. IBM, 2001.

INGRAND, F. Recent trends in formal validation and verification of autonomous

robots software. In: IEEE International Conference on Robotic Computing.

[S.l.: s.n.], 2019.

JARRAYA, A. et al. Distributed collaborative reasoning for har in smart homes

(extended abstract). In: IFAAMAS. Proceedings of the International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS). [S.l.],

2018. p. 1971–1973.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 8. Bibliography 111

JELISAVCIC, M.; ROIJERS, D. M.; EIBEN, A. Analysing the relative importance

of robot brains and bodies. In: MIT PRESS. Artificial Life Conference Pro-

ceedings. [S.l.], 2018. p. 327–334.

JOHNSON, D.; HIPPS, N.; HAILS, S. Helping Consumers Reduce Fruit and

Vegetable Waste: Final Report. [S.l.], 2008.

KARSAI, G.; SZTIPANOVITS, J. A model-based approach to self-adaptive soft-

ware. IEEE Intelligent Systems and Their Applications, IEEE, v. 14, n. 3, p.

46–53, 1999.

KATASONOV, A. et al. Smart semantic middleware for the internet of things.

ICINCO-ICSO, v. 8, p. 169–178, 2008.

KINNY, D. Reliable agent computation: An algebraic approach. In: SPRINGER.

Pacific Rim International Workshop on Multi-Agents. [S.l.], 2001. p. 31–47.

KLÜGL, F.; DAVIDSSON, P. Amason: Abstract meta-model for agent-based sim-

ulation. In: SPRINGER. German Conference on Multiagent System Tech-

nologies. [S.l.], 2013. p. 101–114.

KUURKOVA, V. Kolmogorov’s theorem and multilayer neural networks. Neural

networks, Elsevier, v. 5, n. 3, p. 501–506, 1992.

LAPOUCHNIAN, A. et al. Requirements-driven design of autonomic application

software. In: IBM CORP. Proceedings of the 2006 conference of the Center

for Advanced Studies on Collaborative research. [S.l.], 2006. p. 7.

LUCENA, C. Software engineering for multi-agent systems II: research

issues and practical applications. [S.l.]: Springer Science & Business Media,

2004.

LUCK, M.; D’INVERNO, M. et al. A formal framework for agency and autonomy.

In: ICMAS. [S.l.: s.n.], 1995. v. 95, p. 254–260.

LUCKCUCK, M. et al. Formal specification and verification of autonomous robotic

systems: A survey. arXiv preprint arXiv:1807.00048, 2018.

MACDONALD, B.; HSIEH, B.; WARREN, I. Design for dynamic reconfiguration

of robot software. In: Proceedings of the Second International Conference

on Autonomous Robots and Agents (ICARA 2004). [S.l.: s.n.], 2004.

MAĆIAS-ESCRIVÁ, F. D. et al. Self-adaptive systems: A survey of current ap-

proaches, research challenges and applications. Expert Systems with Applica-

tions, Elsevier, v. 40, n. 18, p. 7267–7279, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 8. Bibliography 112

MAROCCO, D.; NOLFI, S. Emergence of communication in embodied agents

evolved for the ability to solve a collective navigation problem. Connection

Science, Taylor & Francis, v. 19, n. 1, p. 53–74, 2007.

MAROCCO, D.; NOLFI, S. Emergence of communication in embodied agents

evolved for the ability to solve a collective navigation problem. Connection

Science, 2007.

MARZO, G. D. et al. Engineering Self-Organising Systems. Berlin: Springer,

2004.

MASSERA, G. et al. Farsa: An open software tool for embodied cognitive science.

In: Advances in Artificial Life, ECAL. [S.l.: s.n.], 2013. v. 12, p. 538–545.

MASSERA, G. et al. Designing adaptive humanoid robots through the farsa open-

source framework. Adaptive Behavior, SAGE Publications Sage UK: London,

England, v. 22, n. 4, p. 255–265, 2014.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, Springer, v. 5, n. 4,

p. 115–133, 1943.

MILLER, G. F.; TODD, P. M.; HEGDE, S. U. Designing neural networks using

genetic algorithms. In: MORGAN KAUFMANN PUBLISHERS INC. Proceedings

of the third international conference on Genetic algorithms. [S.l.], 1989. p.

379–384.

NASCIMENTO MARX LELES VIANA, C. J. P. d. L. Nathalia Moraes do. An iot-

based tool for human gas monitoring. In: CBIS 2016 (ISSN 2178-2857). Congresso

Brasileiro de Informática em Saúde - CBIS 2016. [S.l.], 2016. v. 15, p. 96–98.

NASCIMENTO, N. A self-configurable iot agent system based on environmental

variability. In: INTERNATIONAL FOUNDATION FOR AUTONOMOUS AGENTS

AND MULTIAGENT SYSTEMS. Proceedings of the 17th International Con-

ference on Autonomous Agents and MultiAgent Systems. [S.l.], 2018. p.

1761–1763.

NASCIMENTO, N. et al. A context-aware machine learning-based approach. In:

ACM. Computer Science and Software Engineering (CASCON), 28th

Annual International Conference on. [S.l.], 2018.

NASCIMENTO, N. et al. A context-aware machine learning-based approach. In:

IBM CORP. Proceedings of the 28th Annual International Conference on

Computer Science and Software Engineering. [S.l.], 2018. p. 40–47.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 8. Bibliography 113

Nascimento, N. et al. Machine Learning-based Variability Handling in IoT Agents.

ArXiv e-prints, fev. 2018.

NASCIMENTO, N. et al. Testing self-organizing multiagent systems. arXiv

preprint arXiv:1904.01736, 2019.

NASCIMENTO, N. et al. A publish-subscribe based architecture for testing multi-

agent systems. In: SEKE/KNOWLEDGE SYSTEMS INSTITUTE, PA, USA. 29th

International Conference on Software Engineering & Knowledge Engi-

neering (SEKE’2017). [S.l.], 2017.

NASCIMENTO, N. M. do; LUCENA, C. J. P. de. Engineering cooperative smart

things based on embodied cognition. In: IEEE. Adaptive Hardware and Systems

(AHS), 2017 NASA/ESA Conference on. [S.l.], 2017. p. 109–116.

NASCIMENTO, N. M. do; LUCENA, C. J. P. de. Fiot: An agent-based framework

for self-adaptive and self-organizing applications based on the internet of things.

Information Sciences, Elsevier, v. 378, p. 161–176, 2017.

NASCIMENTO, N. M. do; LUCENA, C. J. P. de; FUKS, H. Modeling quantified

things using a multi-agent system. In: IEEE. Web Intelligence and Intelligent

Agent Technology (WI-IAT), 2015 IEEE/WIC/ACM International Con-

ference on. [S.l.], 2015. v. 1, p. 26–32.

NELSON, A.; BARLOW, G.; DOITSIDIS, L. Fitness functions in evolutionary

robotics: A survey and analysis. Robotics and Autonomous Systems, 2007.

NOLFI, S. Laboratory of Autonomous Robotics and Artificial Life.

http://laral.istc.cnr.it/, March 1995.

NOLFI, S. et al. Evolutionary robotics. In: . Springer Handbook of

Robotics. Cham: Springer International Publishing, 2016. cap. 76, p. 2035–2068.

ISBN 978-3-319-32552-1.

NOLFI, S.; FLOREANO, D. Coevolving predator and prey robots: Do “arms races”

arise in artificial evolution? Artificial life, MIT Press, v. 4, n. 4, p. 311–335, 1998.

NOLFI, S.; FLOREANO, D. Evolutionary Robotics: The Biol-

ogy,Intelligence,and Technology of Self-Organizing Machines. Cambridge,

MA, USA: MIT Press, 2000. ISBN 0262140705.

NOLFI, S.; PARISI, D. Learning to adapt to changing environments in evolving

neural networks. In: Adaptive Behavior. [S.l.: s.n.], 1997. p. 75–98.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 8. Bibliography 114

OLIVEIRA, E.; LOULA, A. Symbol interpretation in neural networks: an inves-

tigation on representations in communication. In: Proceedings of the Annual

Meeting of the Cognitive Science Society. [S.l.: s.n.], 2014. v. 36, n. 36.

OLIVEIRA, E. S. de; LOULA, A. Symbolic associations in neural network acti-

vations: Representations in the emergence of communication. In: IEEE. Neural

Networks (IJCNN), 2015 International Joint Conference on. [S.l.], 2015.

p. 1–8.

PAGLIUCA, P.; MILANO, N.; NOLFI, S. Maximizing adaptive power in neuroevo-

lution. PloS one, Public Library of Science, v. 13, n. 7, p. e0198788, 2018.

PĚCHOUČEK, M.; MAŘ́IK, V. Industrial deployment of multi-agent technologies:

review and selected case studies. Autonomous Agents and Multi-Agent

Systems, Springer, v. 17, n. 3, p. 397–431, 2008.

PEZZULO, G.; NOLFI, S. Making the environment an informative place: A

conceptual analysis of epistemic policies and sensorimotor coordination. Entropy,

Multidisciplinary Digital Publishing Institute, v. 21, n. 4, p. 350, 2019.

POHL, K.; BÖCKLE, G.; LINDEN, F. J. van D. Software product line engi-

neering: foundations, principles and techniques. [S.l.]: Springer Science &

Business Media, 2005.

POLANI, D. An informational perspective on how the embodiment can relieve

cognitive burden. In: IEEE. Artificial Life (ALIFE), 2011 IEEE Symposium

on. [S.l.], 2011. p. 78–85.

POSLAD, S. Specifying protocols for multi-agent systems interaction. ACM

Transactions on Autonomous and Adaptive Systems (TAAS), ACM, v. 2,

n. 4, p. 15, 2007.

POSTCAPES. Tracking the Internet of Things. August 2019.

Http://postscapes.com/categories.

QUICK, T. et al. On bots and bacteria: Ontology independent embodiment. In:

SPRINGER. European Conference on Artificial Life. [S.l.], 1999. p. 339–343.

RABBITMQ. RabbitMQ. 10 2016. Available in https://www.rabbitmq.com/.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations

by back-propagating errors. Nature, v. 323, n. 6088, p. 533–536, 1986.

RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. 1995.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 8. Bibliography 115

SANTOS, F.; NUNES, I.; BAZZAN, A. L. Model-driven engineering in agent-based

modeling and simulation: a case study in the traffic signal control domain. In:

INTERNATIONAL FOUNDATION FOR AUTONOMOUS AGENTS AND MULTI-

AGENT SYSTEMS. Proceedings of the 16th Conference on Autonomous

Agents and MultiAgent Systems. [S.l.], 2017. p. 1725–1727.

SESHIA, S. A.; SADIGH, D.; SASTRY, S. S. Towards verified artificial intelligence.

arXiv preprint arXiv:1606.08514, 2016.

SOBE, A.; FEHERVARI, I.; ELMENREICH, W. Frevo: A tool for evolving and

evaluating self-organizing systems. In: IEEE Self-adaptive and Self-organizing

Systems Workshop. [S.l.: s.n.], 2012.

SOMMERVILLE, I. Software Engineering. Pearson/Addison-Wesley, 2004. (In-

ternational computer science series). ISBN 9780321210265. Dispońıvel em:

<http://books.google.com.br/books?id=fIJQAAAAMAAJ>.

SONI, G.; KANDASAMY, S. Smart garbage bin systems–a comprehensive survey.

In: SPRINGER. International Conference on Intelligent Information Tech-

nologies. [S.l.], 2017. p. 194–206.

SPIVEY, J. M. Understanding Z: a specification language and its formal

semantics. [S.l.]: Cambridge University Press, 1988.

STARUML. Star UML Tool. August 2019. Http://staruml.io/.

STEELS, L. ECAGENTS: Embodied and Communicating Agents. [S.l.],

2004.

SWAN, M. Sensor mania! The Internet of Things, wearable computing, objective

metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator Networks,

v. 1, n. 3, p. 217–253, 2012.

SWAN, M. Connected car: Quantified self becomes quantified car. Journal of

Sensor and Actuator Networks, Multidisciplinary Digital Publishing Institute,

v. 4, n. 1, p. 2–29, 2015.

TELECOM. JAVA Agent DEvelopment Framework. 08 2015.

Http://jade.tilab.com/.

THRUN, S. et al. Stanley: The robot that won the darpa grand challenge. In: The

2005 DARPA Grand Challenge. [S.l.]: Springer, 2007. p. 1–43.

TURNER, A. J.; MILLER, J. F. Neuroevolution: evolving heterogeneous artificial

neural networks. Evolutionary Intelligence, Springer, v. 7, n. 3, p. 135–154,

2014.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

Chapter 8. Bibliography 116

VIDE, M. D.; NOLFI, S. Emergence of communication in teams of embodied

and situated agents. In: WORLD SCIENTIFIC. The Evolution of Language:

Proceedings of the 6th International Conference (EVOLANG6), Rome,

Italy, 12-15 April 2006. [S.l.], 2006. p. 198.

WEYNS, D.; MALEK, S.; ANDERSSON, J. Forms: Unifying reference model for

formal specification of distributed self-adaptive systems. ACM Transactions on

Autonomous and Adaptive Systems (TAAS), ACM, v. 7, n. 1, p. 8, 2012.

WHITE, J. E. Telescript technology: The foundation for the electronic marketplace.

General Magic white paper, v. 282, 1994.

WHITESON, S. et al. Evolving soccer keepaway players through task decomposi-

tion. Machine Learning, Springer, v. 59, n. 1-2, p. 5–30, 2005.

WOLPER, P. Temporal logic can be more expressive. Information and control,

Elsevier, v. 56, n. 1-2, p. 72–99, 1983.

WOOLDRIDGE, M. An introduction to multiagent systems. [S.l.]: John Wiley

& Sons, 2009.

WOOLDRIDGE, M.; JENNINGS, N. R. Intelligent agents: Theory and practice.

The knowledge engineering review, Cambridge Univ Press, v. 10, n. 02, p.

115–152, 1995.

YAO, X. Evolving artificial neural networks. Proceedings of the IEEE, IEEE,

v. 87, n. 9, p. 1423–1447, 1999.

YIM, M. et al. Modular self-reconfigurable robot systems [grand challenges of

robotics]. IEEE Robotics & Automation Magazine, IEEE, v. 14, n. 1, p. 43–

52, 2007.

ZEDADRA, O. et al. Towards a reference architecture for swarm intelligence-based

internet of things. In: SPRINGER. International Conference on Internet and

Distributed Computing Systems. [S.l.], 2017. p. 75–86.

ZHU, L.; CAI, H.; JIANG, L. Minson: A business process self-adaptive frame-

work for smart office based on multi-agent. In: IEEE. e-Business Engineering

(ICEBE), 2014 IEEE 11th International Conference on. [S.l.], 2014. p. 31–

37.

DBD
PUC-Rio - Certificação Digital Nº 1521396/CA

	Self-Configurable IoT Embedded Agents controlled by Neural Networks
	Resumo
	Contents
	Introduction
	Problem Statement
	Objectives
	Research Questions
	Structure of the Thesis
	Contributions
	Limitations

	Background
	Multiagent System
	Embodied Agents
	Evolutionary Algorithms
	Artificial Neural Network (ANN)
	Formal Methods

	Related Work
	Reference Models for Agents
	Reference Models for Reconfigurable Systems
	Approaches and Applications for Embodied Agents

	Fundamentals of Reconfigurable Embodied Agents
	Preliminary embodied agent concepts
	Preliminary reconfiguration concept
	Statecharts

	Approaches and their Applications
	Framework for IoT Embodied Agents
	An Architecture for Embodied Agents Reconfiguration
	An Approach to Test Embodied Agents

	Conclusion
	Future Work and Open Challenges
	Morphology-based agent design
	Descriptive Evaluations
	Embodied agent testing and verification

	Bibliography

